Greenplum通过gp_dist_random('gp_id') 在所有节点调用某个函数

本文介绍如何在Greenplum数据库中通过gp_dist_random函数优化SQL执行路径,实现函数在各个Segment节点上并行执行,提高查询效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自:digoal

背景

使用greenplum时,如果需要调用一个函数,这个函数很可能就在master执行,而不会跑到segment上去执行。

例如 random()函数。

通过select random()来调用的话,不需要将这条SQL发送到segment节点,所以执行计划如下,没有gather motion的过程。

postgres=# explain analyze select random();    
                                       QUERY PLAN                                           
----------------------------------------------------------------------------------------    
 Result  (cost=0.01..0.02 rows=1 width=0)    
   Rows out:  1 rows with 0.017 ms to end, start offset by 0.056 ms.    
   InitPlan    
     ->  Result  (cost=0.00..0.01 rows=1 width=0)    
           Rows out:  1 rows with 0.004 ms to end of 2 scans, start offset by 0.059 ms.    
 Slice statistics:    
   (slice0)    Executor memory: 29K bytes.    
   (slice1)    Executor memory: 29K bytes.    
 Statement statistics:    
   Memory used: 128000K bytes    
 Total runtime: 0.074 ms    
(11 rows)    

如果要让这个函数在segment执行,怎么办呢?

正文

通过gp_dist_random('gp_id')来调用,gp_dist_random的参数是一个可查询的视图,或表。

postgres=# explain analyze select random() from gp_dist_random('gp_id');    
                                                               QUERY PLAN                                                                    
-----------------------------------------------------------------------------------------------------------------------------------------    
 Gather Motion 240:1  (slice1; segments: 240)  (cost=0.00..4.00 rows=240 width=0)    
   Rows out:  240 rows at destination with 6.336 ms to first row, 59 ms to end, start offset by 4195 ms.    
   ->  Seq Scan on gp_id  (cost=0.00..4.00 rows=1 width=0)    
         Rows out:  Avg 1.0 rows x 240 workers.  Max 1 rows (seg0) with 0.073 ms to first row, 0.075 ms to end, start offset by 4207 ms.    
 Slice statistics:    
   (slice0)    Executor memory: 471K bytes.    
   (slice1)    Executor memory: 163K bytes avg x 240 workers, 163K bytes max (seg0).    
 Statement statistics:    
   Memory used: 128000K bytes    
 Total runtime: 4279.445 ms    
(10 rows)    

gp_id在每个segment中都有一条记录,所以以上SQL会在每个SEGMENT中调用一次random()并返回所有结果,例如我的测试环境中有240个segment, 那么以上SQL将返回240条记录。

在gp_id的定义中,介绍了gp_dist_random用它可以做一些管理的工作:

譬如查询数据库的大小,查询表的大小,其实都是这样统计的。

src/backend/catalog/postgres_bki_srcs

/*-------------------------------------------------------------------------    
 *    
 * gp_id.h    
 *        definition of the system "database identifier" relation (gp_dbid)    
 *        along with the relation's initial contents.    
 *    
 * Copyright (c) 2009-2010, Greenplum inc    
 *    
 * NOTES    
 *    Historically this table was used to supply every segment with its    
 * identification information.  However in the 4.0 release when the file    
 * replication feature was added it could no longer serve this purpose    
 * because it became a requirement for all tables to have the same physical    
 * contents on both the primary and mirror segments.  To resolve this the    
 * information is now passed to each segment on startup based on the    
 * gp_segment_configuration (stored on the master only), and each segment    
 * has a file in its datadirectory (gp_dbid) that uniquely identifies the    
 * segment.    
 *    
 *   The contents of the table are now irrelevant, with the exception that    
 * several tools began relying on this table for use as a method of remote    
 * function invocation via gp_dist_random('gp_id') due to the fact that this    
 * table was guaranteed of having exactly one row on every segment.  The    
 * contents of the row have no defined meaning, but this property is still    
 * relied upon.    
 */    
#ifndef _GP_ID_H_    
#define _GP_ID_H_    
  
  
#include "catalog/genbki.h"    
/*    
 * Defines for gp_id table    
 */    
#define GpIdRelationName                        "gp_id"    
  
/* TIDYCAT_BEGINFAKEDEF    
  
   CREATE TABLE gp_id    
   with (shared=true, oid=false, relid=5001, content=SEGMENT_LOCAL)    
   (    
   gpname       name     ,    
   numsegments  smallint ,    
   dbid         smallint ,    
   content      smallint     
   );    
  
   TIDYCAT_ENDFAKEDEF    
*/    

查询数据库大小的GP函数

postgres=# \df+ pg_database_size    
                                                                                                     List of functions    
   Schema   |       Name       | Result data type | Argument data types |  Type  |  Data access   | Volatility |  Owner   | Language |      Source code      |                         Description                             
------------+------------------+------------------+---------------------+--------+----------------+------------+----------+----------+-----------------------+-------------------------------------------------------------    
 pg_catalog | pg_database_size | bigint           | name                | normal | reads sql data | volatile   | dege.zzz | internal | pg_database_size_name | Calculate total disk space usage for the specified database    
 pg_catalog | pg_database_size | bigint           | oid                 | normal | reads sql data | volatile   | dege.zzz | internal | pg_database_size_oid  | Calculate total disk space usage for the specified database    
(2 rows)    

其中pg_database_size_name 的源码如下:

很明显,在统计数据库大小时也用到了

select sum(pg_database_size('%s'))::int8 from gp_dist_random('gp_id');  

源码如下

Datum    
pg_database_size_name(PG_FUNCTION_ARGS)    
{    
        int64           size = 0;    
        Name            dbName = PG_GETARG_NAME(0);    
        Oid                     dbOid = get_database_oid(NameStr(*dbName));    
  
        if (!OidIsValid(dbOid))    
                ereport(ERROR,    
                                (errcode(ERRCODE_UNDEFINED_DATABASE),    
                                 errmsg("database \"%s\" does not exist",    
                                                NameStr(*dbName))));    
  
        size = calculate_database_size(dbOid);    
  
        if (Gp_role == GP_ROLE_DISPATCH)    
        {    
                StringInfoData buffer;    
  
                initStringInfo(&buffer);    
  
                appendStringInfo(&buffer, "select sum(pg_database_size('%s'))::int8 from gp_dist_random('gp_id');", NameStr(*dbName));    
  
                size += get_size_from_segDBs(buffer.data);    
        }    
  
        PG_RETURN_INT64(size);    
}    

不信我们可以直接查询这个SQL,和使用pg_database_size函数得到的结果几乎是一样的,只差了calculate_database_size的部分。

postgres=# select sum(pg_database_size('postgres'))::int8 from gp_dist_random('gp_id');    
      sum           
----------------    
 16006753522624    
(1 row)    
  
postgres=# select pg_database_size('postgres');    
 pg_database_size     
------------------    
   16006763924106    
(1 row)    

gp_dist_random('gp_id')本质上就是在所有节点查询gp_id,

gp_dist_random('pg_authid')就是在所有节点查询pg_authid,

例如:

postgres=# select * from gp_dist_random('gp_id');    
  gpname   | numsegments | dbid | content     
-----------+-------------+------+---------    
 Greenplum |          -1 |   -1 |      -1    
 Greenplum |          -1 |   -1 |      -1    
 Greenplum |          -1 |   -1 |      -1    
 Greenplum |          -1 |   -1 |      -1    
 Greenplum |          -1 |   -1 |      -1    
 Greenplum |          -1 |   -1 |      -1    
 Greenplum |          -1 |   -1 |      -1    
 Greenplum |          -1 |   -1 |      -1    
 Greenplum |          -1 |   -1 |      -1    
 Greenplum |          -1 |   -1 |      -1    
。。。。。。    

如果不想返回太多记录,可以使用limit 来过滤,但是执行还是会在所有的segment都执行,如下:

postgres=# explain analyze select random() from gp_dist_random('gp_id') limit 1;    
                                                                  QUERY PLAN                                                                       
-----------------------------------------------------------------------------------------------------------------------------------------------    
 Limit  (cost=0.00..0.04 rows=1 width=0)    
   Rows out:  1 rows with 5.865 ms to first row, 5.884 ms to end, start offset by 4212 ms.    
   ->  Gather Motion 240:1  (slice1; segments: 240)  (cost=0.00..0.04 rows=1 width=0)    
         Rows out:  1 rows at destination with 5.857 ms to end, start offset by 4212 ms.    
         ->  Limit  (cost=0.00..0.02 rows=1 width=0)    
               Rows out:  Avg 1.0 rows x 240 workers.  Max 1 rows (seg0) with 0.062 ms to first row, 0.063 ms to end, start offset by 4228 ms.    
               ->  Seq Scan on gp_id  (cost=0.00..4.00 rows=1 width=0)    
                     Rows out:  Avg 1.0 rows x 240 workers.  Max 1 rows (seg0) with 0.060 ms to end, start offset by 4228 ms.    
 Slice statistics:    
   (slice0)    Executor memory: 463K bytes.    
   (slice1)    Executor memory: 163K bytes avg x 240 workers, 163K bytes max (seg0).    
 Statement statistics:    
   Memory used: 128000K bytes    
 Total runtime: 4288.007 ms    
(14 rows)    
<think>好的,我现在需要处理用户关于Greenplumgp_segment_id的查询。用户想了解它的使用说明或者相关的错误排查方法。首先,我要回忆一下gp_segment_id的基本信息,记得它是一个隐藏列,用于标识数据行所在的Segment。接下来,我得结合提供的引用资料,特别是引用[2],里面提到gp_segment_id是表里的隐藏列,标记行所属的节点。 用户可能需要具体的示例,比如如何查询这个字段。根据引用[5],使用gp_dist_random来查询pg_locks表,类似的方法可以应用在这里。因此,我应该建议在SELECT语句中显式调用gp_segment_id,例如SELECT gp_segment_id, * FROM table。 关于错误排查,常见的问题可能包括查询结果不一致或性能问题。比如,数据分布不均会导致某些Segment负载过高。这时候需要检查gp_segment_id的分布情况,使用GROUP BY来分析。引用[5]中的排查锁问题的SQL语句可以作为参考,调整用于检查数据分布。 另外,权限问题也可能导致访问gp_segment_id失败,需要确认用户是否有权限查询系统列。引用[4]提到通过gpconfig配置参数,虽然不直接相关,但权限设置可能会影响系统列的访问。 还有,系统表gp_segment_configuration的信息,如引用[3]中的role和preferred_role,可能和Segment的状态有关。如果用户遇到Segment不可用的情况,检查这个表可以帮助确认节点的状态。 最后,用户可能需要了解如何利用gp_segment_id进行特定操作,比如在特定Segment执行函数,引用[1]中的gp_dist_random('gp_id')方法可以用来在所有节点调用函数,结合gp_segment_id进行定位。 需要确保回答结构清晰,分点说明使用场景和排查步骤,并给出示例SQL。同时,生成的相关问题要围绕gp_segment_id的应用和常见问题展开,帮助用户深入理解。</think>### Greenplum gp_segment_id 使用说明与错误排查 #### 一、gp_segment_id 核心功能 1. **数据分布标识** `gp_segment_id`是Greenplum表的隐藏列,用于标记数据行存储的具体Segment节点编号(从-1开始递增)。通过查询该字段可快速定位数据物理位置[^2]。 示例: ```sql SELECT gp_segment_id, * FROM my_table WHERE id=100; ``` 2. **系统管理工具** 结合`gp_segment_configuration`系统表(包含role、preferred_role等状态信息),可监控Segment节点健康状况[^3]。 #### 二、典型使用场景 1. **数据分布分析** 检查数据倾斜问题: ```sql SELECT gp_segment_id, count(*) FROM large_table GROUP BY 1 ORDER BY 2 DESC; ``` 2. **精准故障排查** 定位特定Segment上的锁冲突: ```sql SELECT gp_execution_dbid(), pid, relation::regclass, mode FROM gp_dist_random('pg_locks') WHERE gp_segment_id = 5; -- 指定问题Segment ```[^5] #### 三、常见错误排查 1. **数据访问异常** * **现象**:查询结果不一致 * **方案**: ```sql SET gp_select_invisible = ON; -- 临时显示隐藏列 SELECT gp_segment_id, ctid, * FROM problem_table; ``` 2. **节点状态异常** * **现象**:特定Segment无响应 * **诊断步骤**: ```sql SELECT * FROM gp_segment_configuration WHERE content = (SELECT gp_segment_id FROM my_table LIMIT 1); ``` 3. **权限问题** * **现象**:无法查询gp_segment_id * **解决方案**: 检查用户是否拥有`pg_authid`中`usesysid`对应权限[^4] #### 四、高级应用技巧 1. **跨节点操作** 在特定Segment执行函数: ```sql SELECT gp_dist_random('gp_id') -- 在所有节点执行 WHERE gp_segment_id = 2; -- 限定特定节点[^1] ``` 2. **参数动态调整** 修改特定Segment参数: ```bash gpconfig -c work_mem -v '256MB' --masteronly # 仅Master gpconfig -c work_mem -v '128MB' # 所有Segment[^4] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值