Intro
基于状态表征的model-based强化学习方法一般需要学习状态转移模型以及奖励模型。现有方法都是将二者联合训练但普遍缺乏对如何平衡二者之间的比重进行研究。本文提出的HarmonyDream便是通过自动调整损失系数来维持任务间的和谐,即在世界模型学习过程中保持观测状态建模和奖励建模之间的动态平衡。
Method
算法基于DreamV2的世界模型架构:
- Representation model: z t ∼ q θ ( z t ∣ z t − 1 , a t − 1 , o t ) z_{t}\sim q_{\theta }( z_{t}\mid z_{t- 1}, a_{t- 1}, o_{t}) zt∼qθ(zt∣zt−1,at−1,ot)
- Observation model: o ^ t ∼ p θ ( o ^ t ∣ z t ) \hat{o}_t\sim p_\theta(\hat{o}_t\mid z_t) o^t∼pθ(o^t∣zt)
- Transition model: z ^ t ∼ p θ ( z ^ t ∣ z t − 1 , a t − 1 ) \hat{z} _t\sim p_\theta ( \hat{z} _t\mid z_{t- 1}, a_{t- 1}) z^t∼pθ(

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



