Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2.
Note: m and n will be at most 100.
同样DP解决,需要注意的地方是有障碍以后,第一行的格子和第一列的格子初始化的时候需要对有障碍的地方进行处理。
例如障碍表:
[0,0,0,0] [0,1,0,0] [1,0,0,0] [0,0,0,0]这时候应该这样初始化:DP[0][0]=1 , DP[1][0]=1, DP[2][0]=0 ,DP[3][0] =0,
即边界递推方程 DP[0][i] = obstacle[0][i]==1 ? 0 : DP[0][i-1]
其他递推方程 DP[i][j] =obstacle[i][j]==1? 0 : DP[i-1][j] + DP[i][j-1]
public static int uniquePathsWithObstacles(int[][] obstacleGrid)
{
int m=obstacleGrid.length;
int n=obstacleGrid[0].length;
if(obstacleGrid[0][0]==1)
return 0;
int[][] dp=new int[m][n];
dp[0][0]=1;
for(int i=1;i<m;i++)
{
if(obstacleGrid[i][0]==1)
dp[i][0]=0;
else {
dp[i][0]=dp[i-1][0];
}
}
for(int j=1;j<n;j++)
{
if(obstacleGrid[0][j]==1)
dp[0][j]=0;
else {
dp[0][j]=dp[0][j-1];
}
}
for(int i=1;i<m;i++)
for(int j=1;j<n;j++)
{
if(obstacleGrid[i][j]==1)
dp[i][j]=0;
else {
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
本文介绍了一个动态规划问题的解决方案——如何在一个包含障碍物的网格中找到从起点到终点的不同路径数量。文章详细解释了初始化过程及核心递推方程。
1178

被折叠的 条评论
为什么被折叠?



