Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
同样DP解决,需要注意的地方是有障碍以后,第一行的格子和第一列的格子初始化的时候需要对有障碍的地方进行处理。
例如障碍表:
[0,0,0,0] [0,1,0,0] [1,0,0,0] [0,0,0,0]这时候应该这样初始化:DP[0][0]=1 , DP[1][0]=1, DP[2][0]=0 ,DP[3][0] =0,
即边界递推方程 DP[0][i] = obstacle[0][i]==1 ? 0 : DP[0][i-1]
其他递推方程 DP[i][j] =obstacle[i][j]==1? 0 : DP[i-1][j] + DP[i][j-1]
public static int uniquePathsWithObstacles(int[][] obstacleGrid)
{
int m=obstacleGrid.length;
int n=obstacleGrid[0].length;
if(obstacleGrid[0][0]==1)
return 0;
int[][] dp=new int[m][n];
dp[0][0]=1;
for(int i=1;i<m;i++)
{
if(obstacleGrid[i][0]==1)
dp[i][0]=0;
else {
dp[i][0]=dp[i-1][0];
}
}
for(int j=1;j<n;j++)
{
if(obstacleGrid[0][j]==1)
dp[0][j]=0;
else {
dp[0][j]=dp[0][j-1];
}
}
for(int i=1;i<m;i++)
for(int j=1;j<n;j++)
{
if(obstacleGrid[i][j]==1)
dp[i][j]=0;
else {
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}