UVA 147 Dollars (子集和问题 & DP)

本文介绍了一种使用动态规划解决新西兰货币组合问题的方法,通过预处理面额转换为单位值,实现了快速计算任意金额的组成方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:New Zealand currency consists of $100, $50, $20, $10, and $5 notes and $2, $1, 50c, 20c, 10c and 5c coins. Write a program that will determine, for any given amount, in how many ways that amount may be made up. Changing the order of listing does not increase the count. Thus 20c may be made up in 4 ways: 1×20c, 2×10c, 10c+2×5c, and 4×5c. Input Input will consist of a series of real numbers no greater than $300.00 each on a separate line. Each amount will be valid, that is will be a multiple of 5c. The file will be terminated by a line containing zero (0.00). Output Output will consist of a line for each of the amounts in the input, each line consisting of the amount of money (with two decimal places and right justified in a field of width 6), followed by the number of ways in which that amount may be made up, right justified in a field of width 17.

解题思路:首先既然所有的钱数都是五分钱的整数倍(题目保证 红字),所以我们把5分当作单位1,300元也就变为6000,所以题目就变成了用1,2,4,10,20,40,100,200,400,1000,2000这些面值的钱币得到一个一个任意小于6000金额的方法数。是一个子集和问题(完全背包)。

       设dp[i][j] 表示使用前 i 类币值能够得到金额 j 的方法数,分析可得到下列递推式

               dp[i][j] = dp[i][j-a[i]] + dp[i-1][j]

注意:本题需要预处理6000以内的结果,并注意输出格式要求

AC代码:

#include <bits/stdc++.h>
#define maxn 6005
using namespace std;
typedef long long LL;
int a[20] = {0,1,2,4,10,20,40,100,200,400,1000,2000};
LL dp[12][maxn];
int main()
{
    //freopen("test.txt","r",stdin);
    for(int i = 0; i<=6000; i++)
    	dp[1][i] = 1;
	for(int i = 2; i<12; i++)
    {
    	for(int j = 0; j<=6000; j++)
    	{
    		dp[i][j] = dp[i-1][j];
    		if(j>=a[i])
    			dp[i][j] += (dp[i][j-a[i]]);
    	}
    }
    double d;
    cout << fixed << showpoint << setprecision(2);
    while(cin>>d && d!=0.00)
    {
    	int m = int(d*20);
    	cout << setw(6) << d << setw(17) << dp[11][m] << endl;
    }
    return 0;
}
当然还可以更简洁一些
#include <bits/stdc++.h>
#define maxn 6005
using namespace std;
typedef long long LL;
int a[20] = {0,1,2,4,10,20,40,100,200,400,1000,2000};
LL dp[maxn];
int main()
{
    for(int i = 0; i<=6000; i++)
    	dp[i] = 1;
	for(int i = 2; i<12; i++)
    	for(int j = a[i]; j<=6000; j++)
    		dp[j] += dp[j-a[i]];
    double d;
    cout << fixed << showpoint << setprecision(2);
    while(cin>>d && d!=0.00)
    {
    	int m = int(d*20);
    	cout << setw(6) << d << setw(17) << dp[m] << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值