思路:
举例:
其中黑色结点为特殊结点,可以看出,每种情况都有一个结点的s值不等于k / 2,但是是好结点,所以最后答案加一。
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define pb push_back
#define fi first
#define se second
#define lson p << 1
#define rson p << 1 | 1
const int maxn = 1e6 + 5, inf = 1e18 + 5, maxm = 4e4 + 5, mod = 1e9 + 7, N = 1e6;
int a[maxn], b[maxn];
// bool vis[maxn];
int n, m;
string s;
vector<int> G[maxn];
int siz[maxn];
int fac[maxn], inv[maxn];
int qpow(int a, int b){
int res = 1;
while(b){
if(b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
int C(int n, int m){
if(n < m) return 0;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
void dfs(int u, int p){
siz[u] = 1;
for(auto v : G[u]){
if(v == p) continue;
dfs(v, u);
siz[u] += siz[v];
}
}
void solve(){
int res = 0;
int x, q, k;
cin >> n >> k;
for(int i = 1; i < n; i++){
int u, v;
cin >> u >> v;
G[u].pb(v);
G[v].pb(u);
}
if(k % 2 == 1){
cout << 1 << '\n';
return;
}
dfs(1, 1);
res = 0;
for(int i = 1; i <= n; i++){
res = (res + C(siz[i], k / 2) * C(n - siz[i], k / 2) % mod * qpow(C(n, k), mod - 2) % mod) % mod;
}
res = (res + 1) % mod;
cout << res << '\n';
}
signed main(){
ios::sync_with_stdio(0);
cin.tie(0);
fac[0] = 1;
for(int i = 1; i <= N; i++){
fac[i] = fac[i - 1] * i % mod;
}
inv[N] = qpow(fac[N], mod - 2);
for(int i = N - 1; i >= 0; i--){
inv[i] = inv[i + 1] * (i + 1) % mod;
}
int T = 1;
// cin >> T;
while (T--)
{
solve();
}
return 0;
}