Clobbering在wikipedia上的定义

本文介绍了在软件工程中,文件或计算机内存被覆盖的概念及其预防措施。通常这种情况是由于无意的操作导致,例如使用重定向操作符时未注意到目标文件已存在。文章还探讨了在makefiles中如何使用clobber目标来清理不必要的文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In software engineering, clobbering a file or computer memory is overwriting its contents. The Jargon File defines clobbering as "overwrit[ing], usually unintentionally: 'I walked off the end of the array and clobbered the stack.' Compare mung, scribble, trash, and smash the stack."[1]

Often this happens unintentionally, e.g., using the > redirection operator. To prevent unintentional clobbering, various means are used. For example, the setting shell parameter set -o noclobber (bash, ksh) or set noclobber (csh, tcsh) will prevent > from clobbering by making it issue an error message instead:[2]

$ echo "Hello, world" >file.txt
$ echo "This will overwrite the first greeting." >file.txt
$ set -o noclobber
$ echo "Can we overwrite it again?" >file.txt
-bash: file.txt: cannot overwrite existing file
$ echo "But we can use the >| operator to ignore the noclobber." >|file.txt
$ # Successfully overwrote the contents of file.txt using the >| operator
$ set +o noclobber # Changes setting back

In makefiles, a common target clobber means complete cleanup of all unnecessary files and directories produced by previous invocations of the make command.[3] It is a more severe target than clean and is commonly used to uninstall software. Some make-related commands invoke "make clobber" during their execution. They check the CLOBBER environment variable. If it is set to OFF then clobbering is not done.[4]

In assembler programming, the term 'clobbered registers' is used to denote any registers whose value may be overwritten during the course of executing an instruction.

References

来自于: http://en.wikipedia.org/wiki/Clobbering
内容概要:本文详细探讨了杯形谐波减速器的齿廓修形方法及寿命预测分析。文章首先介绍了针对柔轮与波发生器装配时出现的啮合干涉问题,提出了一种柔轮齿廓修形方法。通过有限元法装配仿真确定修形量,并对修形后的柔轮进行装配和运转有限元分析。基于Miner线性疲劳理论,使用Fe-safe软件预测柔轮寿命。结果显示,修形后柔轮装配最大应力从962.2 MPa降至532.7 MPa,负载运转应力为609.9 MPa,解决了啮合干涉问题,柔轮寿命循环次数达到4.28×10⁶次。此外,文中还提供了详细的Python代码实现及ANSYS APDL脚本,用于柔轮变形分析、齿廓修形设计、有限元验证和疲劳寿命预测。 适合人群:机械工程领域的研究人员、工程师,尤其是从事精密传动系统设计和分析的专业人士。 使用场景及目标:①解决杯形谐波减速器中柔轮与波发生器装配时的啮合干涉问题;②通过优化齿廓修形提高柔轮的力学性能和使用寿命;③利用有限元分析和疲劳寿命预测技术评估修形效果,确保设计方案的可靠性和可行性。 阅读建议:本文涉及大量有限元分析和疲劳寿命预测的具体实现细节,建议读者具备一定的机械工程基础知识和有限元分析经验。同时,读者可以通过提供的Python代码和ANSYS APDL脚本进行实际操作和验证,加深对修形方法和技术路线的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值