poj 1815(最大流来求割点)

本文介绍了一种解决特定社交网络中最小割点数问题的方法。通过建立图模型并运用最大流算法,解决了当某些个体失去联系时,如何找到使两人间失去通讯的最小人数。同时,该文还关注了输出最小割点的字典序要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Friendship
Time Limit: 2000MS Memory Limit: 20000K
Total Submissions: 5906 Accepted: 1622

Description

In modern society, each person has his own friends. Since all the people are very busy, they communicate with each other only by phone. You can assume that people A can keep in touch with people B, only if
1. A knows B's phone number, or
2. A knows people C's phone number and C can keep in touch with B.
It's assured that if people A knows people B's number, B will also know A's number.

Sometimes, someone may meet something bad which makes him lose touch with all the others. For example, he may lose his phone number book and change his phone number at the same time.

In this problem, you will know the relations between every two among N people. To make it easy, we number these N people by 1,2,...,N. Given two special people with the number S and T, when some people meet bad things, S may lose touch with T. Your job is to compute the minimal number of people that can make this situation happen. It is supposed that bad thing will never happen on S or T.

Input

The first line of the input contains three integers N (2<=N<=200), S and T ( 1 <= S, T <= N , and S is not equal to T).Each of the following N lines contains N integers. If i knows j's number, then the j-th number in the (i+1)-th line will be 1, otherwise the number will be 0.

You can assume that the number of 1s will not exceed 5000 in the input.

Output

If there is no way to make A lose touch with B, print "NO ANSWER!" in a single line. Otherwise, the first line contains a single number t, which is the minimal number you have got, and if t is not zero, the second line is needed, which contains t integers in ascending order that indicate the number of people who meet bad things. The integers are separated by a single space.

If there is more than one solution, we give every solution a score, and output the solution with the minimal score. We can compute the score of a solution in the following way: assume a solution is A1, A2, ..., At (1 <= A1 < A2 <...< At <=N ), the score will be (A1-1)*N^t+(A2-1)*N^(t-1)+...+(At-1)*N. The input will assure that there won't be two solutions with the minimal score.

Sample Input

3 1 3
1 1 0
1 1 1
0 1 1

Sample Output

1
2



  如果单纯是求割点数的话。。。这个题不难。。直接拆点然后最大流处理一下就可以了。。问题是这个题要求按照字典序(依题意推出来的)把最少的割点输出来。。。。。大概思路就是 。。。枚举每个点,除去该点后。。。新建图。。然后看所求的最大流有没有减少。。。。来判断每个点是不是割点。。。。然后保存枚举的割点。。就可以了。。


#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define inf 1000000000
#define maxM 500
#define maxN 150000
struct node{
    int u,v,f,next;
}edge[maxN];
int head[maxM],p,lev[maxM],cur[maxM];
int que[maxM];
inline void init1(){
    p=0;memset(head,-1,sizeof(head));
}
bool bfs(int s,int t){
    int qin=0,qout=0,i,u,v;
    memset(lev,0,sizeof(lev));
    lev[s]=1,que[qin++]=s;
    while(qout!=qin){
        u=que[qout++];
        for(i=head[u];i!=-1;i=edge[i].next)
            if(edge[i].f>0 && lev[v=edge[i].v]==0){
                lev[v]=lev[u]+1,que[qin++]=v;
                if(v==t){
                    qout=qin;break;
                }
            }
    }
    return lev[t];
}
int dinic(int s,int t){
    int u,i,f,k,qin;
    int flow=0;
    while(bfs(s,t)){
        memcpy(cur,head,sizeof(head));
        u=s;qin=0;
        while(1){
            if(u==t){
                for(k=0,f=inf;k<qin;k++)
                    if(edge[que[k]].f<f)
                        f=edge[que[i=k]].f;
                for(k=0;k<qin;k++)
                    edge[que[k]].f-=f,edge[que[k]^1].f+=f;
                flow+=f,u=edge[que[qin=i]].u;
            }
            for(i=cur[u];cur[u]!=-1;i=cur[u]=edge[cur[u]].next)
                if(edge[i].f>0 && lev[u]+1==lev[edge[i].v]) break;
            if(cur[u]!=-1)
                que[qin++]=cur[u],u=edge[cur[u]].v;
            else{
                if(qin==0) break;
                lev[u]=-1,u=edge[que[--qin]].u;
            }
        }
    }
    return flow;
}
void addedge(int u,int v,int f){
    edge[p].u=u,edge[p].v=v,edge[p].f=f,edge[p].next=head[u];head[u]=p++;
    edge[p].u=v,edge[p].v=u,edge[p].f=0,edge[p].next=head[v],head[v]=p++;
}
int main(){
    int n,s,t,flow;
    int i,j,vis[maxM],map[500][500],ans[maxM],ain;
    while(scanf("%d%d%d",&n,&s,&t)!=-1){
        init1();ain=0;
        memset(vis,0,sizeof(vis));
        for(i=1;i<=n;i++)
            if(i!=s && i!=t)  addedge(i,i+n,1);
            else  addedge(i,i+n,inf);
        for(i=1;i<=n;i++)
            for(j=1;j<=n;j++){
                scanf("%d",&map[i][j]);
                if(map[i][j] && j!=s && i!=t && i!=j) // 这里的条件判断是重点
                    addedge(i+n,j,inf);
            }
        if(map[s][t]){
            printf("NO ANSWER!\n"); continue;
        }
        flow=dinic(s,t+n);
        for(i=1;i<=n;i++){
            if(i==s || i==t) continue;
            vis[i]=1;
            init1();
            for(j=1;j<=n;j++)
                if(vis[j]) continue;
                else if(j!=s && j!=t) addedge(j,j+n,1);
                else addedge(j,j+n,inf);
             for(j=1;j<=n;j++)
                 for(int k=1;k<=n;k++){
                     if(map[j][k] && k!=j && j!=t && k!=s && !vis[j] && !vis[k])//同样是重点
                         addedge(j+n,k,inf);
                 }
                 int tmp=dinic(s,t+n);
                 if(tmp<flow)
                     ans[ain++]=i,flow=tmp;
                 else vis[i]=0;
        }
        printf("%d\n",ain);
        for(i=0;i<ain-1;i++)
            printf("%d ",ans[i]);
        if(ain>0)
            printf("%d\n",ans[ain-1]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值