poj 3517(约瑟夫环。。。。。)

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。
  为了讨论方便,先把问题稍微改变一下,并不影响原意:
  问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出
  ,剩下的人继续从0开始报数。求胜利者的编号。
  我们知道第一个人(编号一定是(m-1)%n) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
  k k+1 k+2 ... n-2, n-1, 0, 1, 2, ... k-2
  并且从k开始报0。
  现在我们把他们的编号做一下转换:
  k --> 0
  k+1 --> 1
  k+2 --> 2
  ...
  ...
  k-3 --> n-3
  k-2 --> n-2
  序列1: 1, 2, 3, 4, …, n-2, n-1, n
  序列2: 1, 2, 3, 4, … k-1, k+1, …, n-2, n-1, n
  序列3: k+1, k+2, k+3, …, n-2, n-1, n, 1, 2, 3,…, k-2, k-1
  序列4:1, 2, 3, 4, …, 5, 6, 7, 8, …, n-2, n-1
  变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:
  ∵ k=m%n;
  ∴ x' = x+k = x+ m%n ; 而 x+ m%n 可能大于n
  ∴x'= (x+ m%n)%n = (x+m)%n
  得到 x‘=(x+m)%n
  如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:
  令f表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n].
  递推公式:
  f[1]=0;
  f[i]=(f[i-1]+m)%i; (i>1)

  有了这个公式,我们要做的就是从1-n顺序算出f的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1由于是逐级递推,不需要保存每个f,程序也是异常简单:

================================================来自百度百科


#include <iostream>
#include<cstdio>
using namespace std;
int main(int argc, char** argv) {

    int n,k,m,s,i;
    while(scanf("%d%d%d",&n,&k,&m) && (n||k||m)){
        s=0;
        for(i=2;i<n;i++)
            s=(s+k)%i;
        s=(s+m)%i;
        printf("%d\n",s+1);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值