制作语义分割数据集大致需要
(1)使用labelme对数据进行标注,生成对应图片的json格式。
(2)批量转化 json文件为单通道的png文件
(3)生成训练和测试集
1. 用labelme标注的样本,然后批量重命名图片和json格式的样本
import os
path = "D:\\tu"
filelist = os.listdir(path) #该文件夹下所有的文件(包括文件夹)
i=1
for file in filelist: #遍历所有文件
if file.endswith('.jpg'):
Olddir=os.path.join(path,file) #原来的文件路径
if os.path.isdir(Olddir): #如果是文件夹则跳过
continue
filename=os.path.splitext(file)[0] #文件名
filetype=os.path.splitext(file)[1] #文件扩展名
Newdir=os.path.join(path,str(i).zfill(6)+filetype) #用字符串函数zfill 以0补全所需位数
os.rename(Olddir,Newdir)#重命名
if file.endswith('.json'):
Olddir=os.path.join(path,file) #原来的文件路径
if os.path.isdir(Olddir): #如果是文件夹则跳过
continue
filename=os.path.splitext(file)[0] #文件名
filetype=os.path.splitext(file)[1] #文件扩展名
Newdir=os.path.join(path,str(i).zfill(6)+filetype) #用字符串函数zfill 以0补全所需位数
os.rename(Olddir,Newdir)#重命名
i = i + 1
批量提取同一文件夹下相同后缀的所有文件: 打开命令行,输入copy
d:\tupian\*.json d:\yangben
2. 批量转化 json文件为单通道的png文件
1)先进入C:\Users\ss\Anaconda3\envs\labelme\Lib\site-packages\labelme\utils中查看是否有draw.py文件,如果没有,添加 draw.py文件如下:
import io
import os.path as osp
import numpy as np
import PIL.Image
import PIL.ImageDraw
import PIL.ImageFont
def label_colormap(N=256):
def bitget(byteval, idx):
return ((byteval & (1 << idx)) != 0)
cmap = np.zeros((N, 3))
for i in range(0, N):
id = i
r, g, b = 0, 0, 0
for j in range(0, 8):
r = np.bitwise_or(r, (bitget(id, 0) << 7 - j))
g = np.bitwise_or(g, (bitget(id, 1) << 7 - j))
b = np.bitwise_or(b, (bitget(id, 2) << 7 - j))
id = (id >> 3)
cmap[i, 0] = r
cmap[i, 1] = g
cmap[i, 2] = b
cmap = cmap.astype(np.float32) / 255
return cmap
def _validate_colormap(colormap, n_labels):
if colormap is None:
colormap = label_colormap(n_labels)
else:
assert colormap.shape == (colormap.shape[0], 3), \
'colormap must be sequence of RGB values'
assert 0 <= colormap.min() and colormap.max() <= 1, \
'colormap must ranges 0 to 1'
return colormap
# similar function as skimage.color.label2rgb
def label2rgb(
lbl, img=None, n_labels=None, alpha=0.5, thresh_suppress=0, colormap=None,
):
if n_labels is None:
n_labels = len(np.unique(lbl))
colormap = _validate_colormap(colormap, n_labels)
colormap = (colormap * 255).astype(np.uint8)
lbl_viz = colormap[lbl]
lbl_viz[lbl == -1] = (0, 0, 0) # unlabeled
if img is not None:
img_gray = PIL.Image.fromarray(img).convert('LA')
img_gray = np.asarray(img_gray.convert('RGB'))
# img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# img_gray = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2RGB)
lbl_viz = alpha * lbl_viz + (1 - alpha) * img_gray
lbl_viz = lbl_viz.astype(np.uint8)
return lbl_viz
def draw_label(label, img=None, label_names=None, colormap=None, **kwargs):
"""Draw pixel-wise label with colorization and label names.
label: ndarray, (H, W)
Pixel-wise labels to colorize.
img: ndarray, (H, W, 3), optional
Image on which the colorized label will be drawn.
label_names: iterable
List of label names.
"""
import matplotlib.pyplot as plt
backend_org = plt.rcParams['backend']
plt.switch_backend('agg')
plt.subplots_adjust(left=0, right=1, top=1, bottom=0,
wspace=0, hspace=0)
plt.margins(0, 0)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
if label_names is None:
label_names = [str(l) for l in range(label.max() + 1)]
colormap = _validate_colormap(colormap, len(label_names))
label_viz = label2rgb(
label, img, n_labels=len(label_names), colormap=colormap, **kwargs
)
plt.imshow(label_viz)
plt.axis('off')
plt_handlers = []
plt_titles = []
for label_value, label_name in enumerate(label_names):
if label_value not in label:
continue
fc = colormap[label_value]
p = plt.Rectangle((0, 0), 1, 1, fc=fc)
plt_handlers.append(p)
plt_titles.append('{value}: {name}'
.format(value=label_value, name=label_name))
plt.legend(plt_handlers, plt_titles, loc='lower right', framealpha=.5)
f = io.BytesIO()
plt.savefig(f, bbox_inches='tight', pad_inches=0)
plt.cla()
plt.close()
plt.switch_backend(backend_org)
out_size = (label_viz.shape[1], label_viz.shape[0])
out = PIL.Image.open(f).resize(out_size, PIL.Image.BILINEAR).convert('RGB')
out = np.asarray(out)
return out
def draw_instances(
image=None,
bboxes=None,
labels=None,
masks=None,
captions=None,
):
import matplotlib
# TODO(wkentaro)
assert image is not None
assert bboxes is not None
assert labels is not None
assert masks is None
assert captions is not None
viz = PIL.Image.fromarray(image)
draw = PIL.ImageDraw.ImageDraw(viz)
font_path = osp.join(
osp.dirname(matplotlib.__file__),
'mpl-data/fonts/ttf/DejaVuSans.ttf'
)
font = PIL.ImageFont.truetype(font_path)
colormap = label_colormap(255)
for bbox, label, caption in zip(bboxes, labels, captions):
color = colormap[label]
color = tuple((color * 255).astype(np.uint8).tolist())
xmin, ymin, xmax, ymax = bbox
draw.rectangle((xmin, ymin, xmax, ymax), outline=color)
draw.text((xmin, ymin), caption, font=font)
return np.asarray(viz)
2)再修改__init__.py文件,添加5行代码如下
from .draw import label_colormap
from .draw import _validate_colormap
from .draw import label2rgb
from .draw import draw_label
from .draw import draw_instances
3)将C:\Users\ss\Anaconda3\envs\labelme\Lib\site-packages\labelme\cli下的 json_to_dataset.py文件的代码替换如下:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import argparse
import json
import os
import os.path as osp
import base64
import warnings
import PIL.Image
import yaml
from labelme import utils
import cv2
import numpy as np
#from skimage import img_as_ubyte
# from sys import argv
def main():
parser = argparse.ArgumentParser()
parser.add_argument('json_file')
parser.add_argument('-o', '--out', default=None)
args = parser.parse_args()
json_file = args.json_file
list_path = os.listdir(json_file)
for i in range(0, len(list_path)):
if list_path[i].endswith('.json'):
path = os.path.join(json_file, list_path[i])
if os.path.isfile(path):
data = json.load(open(path))
img = utils.img_b64_to_arr(data['imageData'])
lbl, lbl_names = utils.labelme_shapes_to_label(img.shape, data['shapes'])
captions = ['%d: %s' % (l, name) for l, name in enumerate(lbl_names)]
lbl_viz = utils.draw_label(lbl, img, captions)
save_file_name = osp.basename(path).replace('.', '_')
out_dir1 = osp.join(osp.dirname(path), 'labelme_results')
if not osp.exists(out_dir1):
os.mkdir(out_dir1)
out_dir1 = osp.join(out_dir1, save_file_name)
if not osp.exists(out_dir1):
os.mkdir(out_dir1)
PIL.Image.fromarray(img).save(out_dir1 + '\\' + save_file_name + '_img.png')
PIL.Image.fromarray(lbl).save(out_dir1 + '\\' + save_file_name + '_label.png')
PIL.Image.fromarray(lbl_viz).save(out_dir1 + '\\' + save_file_name +
'_label_viz.png')
images_dir = osp.join(json_file, 'images_dir')
if not osp.exists(images_dir):
os.mkdir(images_dir)
labels_dir = osp.join(json_file, 'labels_dir')
if not osp.exists(labels_dir):
os.mkdir(labels_dir)
PIL.Image.fromarray(img).save(osp.join(images_dir, '{}_img.png'.format(save_file_name)))
PIL.Image.fromarray(lbl).save(osp.join(labels_dir, '{}_label.png'.format(save_file_name)))
with open(osp.join(out_dir1, 'label_names.txt'), 'w') as f:
for lbl_name in lbl_names:
f.write(lbl_name + '\n')
info = dict(label_names=lbl_names)
with open(osp.join(out_dir1, 'info.yaml'), 'w') as f:
yaml.safe_dump(info, f, default_flow_style=False)
print('Saved to: %s' % out_dir1)
if __name__ == '__main__':
main()
打开cmd环境,输入activate labelme 激活labelme
输入labelme_json_to_dataset E:\json\ 进行批量转化json文件,其中E:\json\为json所在文件夹,转化后的文件保存在E:\json\labelme_results\,获取的label.png文件在E:\json\labels_dir。
3.16位label.png转化为8位图像
from PIL import Image
import numpy as np
import math
import os
path = "C:/Users/Administrator/Desktop/trainjson/labels_dir/"
newpath = "C:/Users/Administrator/Desktop/trainjson/labels_dir/"
def img16toeight():
filelist = os.listdir(path) # 该文件夹下所有的文件(包括文件夹)
for file in filelist:
whole_path = os.path.join(path, file)
img = Image.open(whole_path) # 打开图片img = Image.open(dir)#打开图片
img = np.array(img)
img = Image.fromarray(np.uint8(img))
img.save(newpath + file)
img16toeight()
4. 生成训练集测试集
import os
import random
trainval_percent = 0.9
train_percent = 0.9 #train的数量为trainval的0.9
imgfilepath = 'E:/Ultra-Fast-Lane-Detection-master/CULANROOT/driver_161_90frame/images_dir'
imglist = os.listdir(imgfilepath)
num = len(imglist)
list = range(num)
tv = int(num*trainval_percent)
tr = int(tv*train_percent)
trainval = random.sample(list, tv)#从0-num-1中任意选择tv个数字
train = random.sample(trainval, tr)#从trainval中任意选择tr个数字
ftrainval = open('E:/Ultra-Fast-Lane-Detection-master/CULANROOT/list/trainval.txt', 'w')
ftest = open('E:/Ultra-Fast-Lane-Detection-master/CULANROOT/list/test.txt', 'w')
ftrain = open('E:/Ultra-Fast-Lane-Detection-master/CULANROOT/list/train.txt', 'w')
fval = open('E:/Ultra-Fast-Lane-Detection-master/CULANROOT/list/val.txt', 'w')
for i in list:
name = "/driver_161_90frame/images_dir/"+imglist[i]+'\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest .close()