The Guru Myth

本文探讨了软件行业中普遍存在的大师神话,并指出这种观念如何误导人们解决问题的方式。作者认为,所谓的大师其实也是普通人,他们通过长期的学习和经验积累来解决问题。文章呼吁软件行业应该摒弃这种神话,鼓励大家共同成长。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Guru Myth

Ryan Brush

ANYONE WHO HAS WORKED iN SOFTWARE LONG ENOUGH has heard questions like this:
I’m getting exception XYZ. Do you know what the problem is?
Those asking the question rarely bother to include stack traces, error logs, or any context leading to the problem. They seem to think you operate on a dif- ferent plane, that solutions appear to you without analysis based on evidence. They think you are a guru.
We expect such questions from those unfamiliar with software; to them, sys- tems can seem almost magical. What worries me is seeing this in the software community. Similar questions arise in program design, such as “I’m building inventory management. Should I use optimistic locking?” Ironically, people asking the question are often better equipped to answer it than the question’s recipient. The questioners presumably know the context, know the require- ments, and can read about the advantages and disadvantages of different strat- egies. Yet they expect you to give an intelligent answer without context. They expect magic.
It’s time for the software industry to dispel this guru myth. “Gurus” are human. They apply logic and systematically analyze problems like the rest of us. They tap into mental shortcuts and intuition. Consider the best programmer you’ve ever met: at one point, that person knew less about software than you do now. If someone seems like a guru, it’s because of years dedicated to learning and refining thought processes. A “guru” is simply a smart person with relentless curiosity.
72 97 Things Every Programmer Should Know

Of course, there remains a huge variance in natural aptitude. Many hack- ers out there are smarter, more knowledgeable, and more productive than I may ever be. Even so, debunking the guru myth has a positive impact. For instance, when working with someone smarter than me, I am sure to do the legwork, to provide enough context so that person can efficiently apply his or her skills. Removing the guru myth also means removing a perceived barrier to improvement. Instead of a magical barrier, I see a continuum along which I can advance.
Finally, one of software’s biggest obstacles is smart people who purposefully propagate the guru myth. This might be done out of ego, or as a strategy to increase one’s value as perceived by a client or employer. Ironically, this atti- tude can make smart people less valuable, since they don’t contribute to the growth of their peers. We don’t need gurus. We need experts willing to develop other experts in their field. There is room for all of us.

内容概要:《中文大模型基准测评2025年上半年报告》由SuperCLUE团队发布,详细评估了2025年上半年中文大模型的发展状况。报告涵盖了大模型的关键进展、国内外大模型全景图及差距、专项测评基准介绍等。通过SuperCLUE基准,对45个国内外代表性大模型进行了六大任务(数学推理、科学推理、代码生成、智能体Agent、精确指令遵循、幻觉控制)的综合测评。结果显示,海外模型如o3、o4-mini(high)在推理任务上表现突出,而国内模型如Doubao-Seed-1.6-thinking-250715在智能体Agent和幻觉控制任务上表现出色。此外,报告还分析了模型性价比、效能区间分布,并对代表性模型如Doubao-Seed-1.6-thinking-250715、DeepSeek-R1-0528、GLM-4.5等进行了详细介绍。整体来看,国内大模型在特定任务上已接近国际顶尖水平,但在综合推理能力上仍有提升空间。 适用人群:对大模型技术感兴趣的科研人员、工程师、产品经理及投资者。 使用场景及目标:①了解2025年上半年中文大模型的发展现状与趋势;②评估国内外大模型在不同任务上的表现差异;③为技术选型和性能优化提供参考依据。 其他说明:报告提供了详细的测评方法、评分标准及结果分析,确保评估的科学性和公正性。此外,SuperCLUE团队还发布了多个专项测评基准,涵盖多模态、文本、推理等多个领域,为业界提供全面的测评服务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值