图论动态规划算法——Floyd最短路径

本文介绍了Floyd算法,一种经典的多源最短路径算法,利用动态规划寻找图中任意两点间的最短路径。通过递归更新权值矩阵,逐步确定所有顶点之间的最短距离。核心思想是逐一选取中转点,检查是否能通过中转点缩短路径。算法过程包括初始化距离矩阵,然后遍历所有顶点作为中转点进行路径更新。尽管时间复杂度较高,但适用于稠密图和计算所有节点对的最短路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

推出一个新系列,《看图轻松理解数据结构和算法》,主要使用图片来描述常见的数据结构和算法,轻松阅读并理解掌握。本系列包括各种堆、各种队列、各种列表、各种树、各种图、各种排序等等几十篇的样子。

Floyd算法

Floyd是一种经典的多源最短路径算法,它通过动态规划的思想来寻找给定加权图中的多源点之间的最短路径,算法时间复杂度是O(n3)。之所以叫Floyd是因为该算法发明人之一是Robert Floyd,他是1978年图灵奖获得者,同时也是斯坦福大学计算机科学系教授。

image

核心思想

对于n个点的加权图,从加权图的权值矩阵开始,递归地更新n次最终求得每两点之间的最短路径矩阵。即加权图的邻接矩阵为 D = ( d i j ) n × n D=(d_{ij})_{n \times n}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超人汪小建(seaboat)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值