Copyright (c) 2015,烟台大学计算机学院
All rights reserved,
文件名称:idea.cpp
作者:王阳
完成日期:2015年12月07日
输出图G中从顶点u到v的长度为s的所有简单路径:
int main()
{
ALGraph *G;
int A[5][5]=
{
{0,1,0,1,0},
{1,0,1,0,0},
{0,1,0,1,1},
{1,0,1,0,1},
{0,0,1,1,0}
}; //请画出对应的有向图
ArrayToList(A[0], 5, G);
DispSomePaths(G, 1, 4, 3);
return 0;
}
int visited[MAXV]; //全局变量
void DFSPath(ALGraph *G,int u,int v,int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
int w,i;
ArcNode *p;
visited[u]=1;
d++;
path[d]=u;
p=G->adjlist[u].firstarc; //p指向顶点u的第一条边
while (p!=NULL)
{
w=p->adjvex; //w为顶点u的相邻点
if (w==v && d>0) //找到一个回路,输出之
{
printf(" ");
for (i=0; i<=d; i++)
printf("%d ",path[i]);
printf("%d \n",v);
}
if (visited[w]==0) //w未访问,则递归访问之
DFSPath(G,w,v,path,d);
p=p->nextarc; //找u的下一个邻接顶点
}
visited[u]=0; //恢复环境:使该顶点可重新使用
}
void FindCyclePath(ALGraph *G,int k)
//输出经过顶点k的所有回路
{
int path[MAXV],i;
for (i=0; i<G->n; i++)
visited[i]=0; //访问标志数组初始化
printf("经过顶点%d的所有回路\n",k);
DFSPath(G,k,k,path,-1);
printf("\n");
}
本文介绍了一种基于深度优先搜索(DFS)的算法来找出图中从顶点u到v的所有长度为s的简单路径,并通过具体实现展示了如何利用递归的方法找到并输出这些路径。此外还提供了一个寻找所有经过指定顶点的回路的方法。
828

被折叠的 条评论
为什么被折叠?



