第十二周项目1-图基本算法库

本文介绍了一种基于C++实现的图数据结构及其存储方式之间的转换方法,包括邻接矩阵到邻接表的转换和反之亦然。通过具体示例展示了如何使用这些函数来构建和显示不同的图存储结构。
Copyright (c) 2015,烟台大学计算机学院
All rights reserved,

文件名称:idea.cpp

作者:王阳

完成日期:2015年12月07日

#define MAXV 100                //最大顶点个数
#define INF 32767       //INF表示∞
typedef int InfoType;

//以下定义邻接矩阵类型
typedef struct
{
    int no;                     //顶点编号
    InfoType info;              //顶点其他信息,在此存放带权图权值
} VertexType;                   //顶点类型

typedef struct                  //图的定义
{
    int edges[MAXV][MAXV];      //邻接矩阵
    int n,e;                    //顶点数,弧数
    VertexType vexs[MAXV];      //存放顶点信息
} MGraph;                       //图的邻接矩阵类型

//以下定义邻接表类型
typedef struct ANode            //弧的结点结构类型
{
    int adjvex;                 //该弧的终点位置
    struct ANode *nextarc;      //指向下一条弧的指针
    InfoType info;              //该弧的相关信息,这里用于存放权值
} ArcNode;

typedef int Vertex;

typedef struct Vnode            //邻接表头结点的类型
{
    Vertex data;                //顶点信息
    int count;                  //存放顶点入度,只在拓扑排序中用
    ArcNode *firstarc;          //指向第一条弧
} VNode;

typedef VNode AdjList[MAXV];    //AdjList是邻接表类型

typedef struct
{
    AdjList adjlist;            //邻接表
    int n,e;                    //图中顶点数n和边数e
} ALGraph;                      //图的邻接表类型

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
//      n - 矩阵的阶数
//      g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g
void DispMat(MGraph g);//输出邻接矩阵g
void DispAdj(ALGraph *G);//输出邻接表G


 

#include <stdio.h>
#include <malloc.h>
#include "graph.h"

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
//      n - 矩阵的阶数
//      g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    g.n=n;
    for (i=0; i<g.n; i++)
        for (j=0; j<g.n; j++)
        {
            g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用
            if(g.edges[i][j]!=0)
                count++;
        }
    g.e=count;
}

void ArrayToList(int *Arr, int n, ALGraph *&G)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    G->n=n;
    for (i=0; i<n; i++)                 //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<n; i++)                 //检查邻接矩阵中每个元素
        for (j=n-1; j>=0; j--)
            if (Arr[i*n+j]!=0)      //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=Arr[i*n+j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }

    G->e=count;
}

void MatToList(MGraph g, ALGraph *&G)
//将邻接矩阵g转换成邻接表G
{
    int i,j;
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    for (i=0; i<g.n; i++)                   //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<g.n; i++)                   //检查邻接矩阵中每个元素
        for (j=g.n-1; j>=0; j--)
            if (g.edges[i][j]!=0)       //存在一条边
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=g.edges[i][j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }
    G->n=g.n;
    G->e=g.e;
}

void ListToMat(ALGraph *G,MGraph &g)
//将邻接表G转换成邻接矩阵g
{
    int i,j;
    ArcNode *p;
    for (i=0; i<g.n; i++)   //先初始化邻接矩阵
        for (j=0; j<g.n; j++)
            g.edges[i][j]=0;
    for (i=0; i<G->n; i++)  //根据邻接表,为邻接矩阵赋值
    {
        p=G->adjlist[i].firstarc;
        while (p!=NULL)
        {
            g.edges[i][p->adjvex]=p->info;
            p=p->nextarc;
        }
    }
    g.n=G->n;
    g.e=G->e;
}

void DispMat(MGraph g)
//输出邻接矩阵g
{
    int i,j;
    for (i=0; i<g.n; i++)
    {
        for (j=0; j<g.n; j++)
            if (g.edges[i][j]==INF)
                printf("%3s","∞");
            else
                printf("%3d",g.edges[i][j]);
        printf("\n");
    }
}

void DispAdj(ALGraph *G)
//输出邻接表G
{
    int i;
    ArcNode *p;
    for (i=0; i<G->n; i++)
    {
        p=G->adjlist[i].firstarc;
        printf("%3d: ",i);
        while (p!=NULL)
        {
            printf("-->%d/%d ",p->adjvex,p->info);
            p=p->nextarc;
        }
        printf("\n");
    }
}


 

</pre><pre class="cpp" name="code">#include <stdio.h>
#include <malloc.h>
#include "graph.h"

int main()
{
    MGraph g1,g2;
    ALGraph *G1,*G2;
    int A[6][6]=
    {
        {0,5,0,7,0,0},
        {0,0,4,0,0,0},
        {8,0,0,0,0,9},
        {0,0,5,0,0,6},
        {0,0,0,5,0,0},
        {3,0,0,0,1,0}
    };

    ArrayToMat(A[0], 6, g1);  //取二维数组的起始地址作实参,用A[0],因其实质为一维数组地址,与形参匹配
    printf(" 有向图g1的邻接矩阵:\n");
    DispMat(g1);

    ArrayToList(A[0], 6, G1);
    printf(" 有向图G1的邻接表:\n");
    DispAdj(G1);

    MatToList(g1,G2);
    printf(" 图g1的邻接矩阵转换成邻接表G2:\n");
    DispAdj(G2);

    ListToMat(G1,g2);
    printf(" 图G1的邻接表转换成邻接邻阵g2:\n");
    DispMat(g2);
    printf("\n");
    return 0;
}


复杂几何的多球近似MATLAB类及多球模型的比较 MATLAB类Approxi提供了一个框架,用于使用具有迭代缩放的聚集球体模型来近似解剖体积模型,以适应目标体积和模型比较。专为骨科、生物力学和计算几何应用而开发。 MATLAB class for multi-sphere approximation of complex geometries and comparison of multi-sphere models 主要特点: 球体模型生成 1.多球体模型生成:与Sihaeri的聚集球体算法的接口 2.音量缩放 基于体素的球体模型和参考几何体的交集。 迭代缩放球体模型以匹配目标体积。 3.模型比较:不同模型体素占用率的频率分析(多个评分指标) 4.几何分析:原始曲面模型和球体模型之间的顶点到最近邻距离映射(带颜色编码结果)。 如何使用: 1.代码结构:Approxi类可以集成到相应的主脚本中。代码的关键部分被提取到单独的函数中以供重用。 2.导入:将STL(或网格)导入MATLAB,并确保所需的函数,如DEM clusteredSphere(populateSpheres)和inpolyhedron,已添加到MATLAB路径中 3.生成多球体模型:使用DEM clusteredSphere方法从输入网格创建多球体模型 4.运行体积交点:计算多球体模型和参考几何体之间的基于体素的交点,并调整多球体模型以匹配目标体积 5.比较和可视化模型:比较多个多球体模型的体素频率,并计算多球体模型与原始表面模型之间的距离,以进行2D/3D可视化 使用案例: 骨科和生物力学体积建模 复杂结构的多球模型形状近似 基于体素拟合度量的模型选择 基于距离的患者特定几何形状和近似值分析 优点: 复杂几何的多球体模型 可扩展模型(基于体素)-自动调整到目标体积 可视化就绪输出(距离
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值