
数学基础
wangyajie_11
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
奇异值分解(SVD)详解及其应用
1.前言 第一次接触奇异值分解还是在本科期间,那个时候要用到点对点的刚体配准,这是查文献刚好找到了四元数理论用于配准方法(点对点配准可以利用四元数方法,如果点数不一致更建议应用ICP算法)。一直想找个时间把奇异值分解理清楚、弄明白,直到今天才系统地来进行总结。 上一次学习过关于PCA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。特征值和奇异值在转载 2017-02-15 09:41:24 · 800 阅读 · 0 评论 -
softmax函数简介
Softmax在机器学习中有非常广泛的应用,但是刚刚接触机器学习的人可能对Softmax的特点以及好处并不理解,其实你了解了以后就会发现,Softmax计算简单,效果显著,非常好用。 我们先来直观看一下,Softmax究竟是什么意思 我们知道max,假如说我有两个数,a和b,并且a>b,如果取max,那么就直接取a,没有第二种可能 但有的时候我不想这样,因为这样会造成分值小的那个饥饿转载 2017-07-24 12:15:35 · 2762 阅读 · 0 评论