DataSet
DataSet 是具有强类型的数据集合,需要提供对应的类型信息。
创建 DataSet
// 1) 使用样例类序列创建 DataSet
scala> case class Person(name: String, age: Long)
defined class Person
scala> val caseClassDS = Seq(Person("zhangsan",2)).toDS()
caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: Long]
scala> caseClassDS.show
+---------+---+
| name|age|
+---------+---+
| zhangsan| 2|
+---------+---+
// 2) 使用基本类型的序列创建 DataSet
scala> val ds = Seq(1,2,3,4,5).toDS
ds: org.apache.spark.sql.Dataset[Int] = [value: int]
scala> ds.show
+-----+
|value|
+-----+
| 1|
| 2|
| 3|
| 4|
| 5|
+-----+
注意:在实际使用的时候,很少用到把序列转换成DataSet,更多的是通过RDD来得到 DataSet
RDD 转换为 DataSet
SparkSQL 能够自动将包含有 case 类的 RDD 转换成 DataSet,case 类定义了 table 的结构,case 类属性通过反射变成了表的列名。Case 类可以包含诸如 Seq 或者 Array 等复杂的结构。
scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30), ("lisi",49))).map(t=>User(t._1,
t._2)).toDS
res11: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
DataSet 转换为 RDD
// DataSet 其实也是对 RDD 的封装,所以可以直接获取内部的 RDD
scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30), ("lisi",49))).map(t=>User(t._1,
t._2)).toDS
res11: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
scala> val rdd = res11.rdd
rdd: org.apache.spark.rdd.RDD[User] = MapPartitionsRDD[51] at rdd at
<console>:25
scala> rdd.collect
res12: Array[User] = Array(User(zhangsan,30), User(lisi,49))
DataFrame 和 DataSet 转换
DataFrame 其实是 DataSet 的特例,所以它们之间是可以互相转换的。
// ➢ DataFrame 转换为 DataSet
scala> case class User(name:String, age:Int)
defined class User
scala> val df = sc.makeRDD(List(("zhangsan",30),
("lisi",49))).toDF("name","age")
df: org.apache.spark.sql.DataFrame = [name: string, age: int]
scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
// ➢ DataSet 转换为 DataFrame
scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
scala> val df = ds.toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]