分布式数据并行DistributedDataParallel

DistributedDataParallel是PyTorch的分布式数据并行实现,相比DataParallel,它通过多进程而非多线程实现,避免了GIL的限制。每个进程在独立的GPU上运行,拥有自己的数据和训练流程,仅在梯度聚合时进行通信。这种设计减少了数据传输,提高了训练效率。DDP在每个进程内部进行完整的优化步骤,然后通过通信同步梯度,保证所有GPU的模型参数一致,而DataParallel则在主GPU上集中更新和广播参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DistributedDataParallel,torch.distributed相对于torch.nn.DataParalle 是一个底层的API,所以我们要修改我们的代码,使其能够独立的在机器(节点)中运行。

与 DataParallel 的单进程控制多 GPU 不同,在 distributed 的帮助下,我们只需要编写一份代码,torch 就会自动将其分配给n个进程,分别在 n 个 GPU 上运行。不再有主GPU,每个GPU执行相同的任务。对每个GPU的训练都是在自己的过程中进行的。每个进程都从磁盘加载其自己的数据。分布式数据采样器可确保加载的数据在各个进程之间不重叠。损失函数的前向传播和计算在每个GPU上独立执行。因此,不需要收集网络输出。在反向传播期间,梯度下降在所有GPU上均被执行,从而确保每个GPU在反向传播结束时最终得到平均梯度的相同副本、

区别:DDP通过多进程实现的。也就是说操作系统会为每个GPU创建一个进程,从而避免了Python解释器GIL带来的性能开销。而DataParallel()是通过单进程控制多线程来实现的。

对比DataParallel,DistributedDataParallel的优势如下:

1.每个进程对应一个独立的训练过程,且只对梯度等少量数据进行信息交换。

在每次迭代中,每个进程具有自己的 optimizer ,并独立完成所有的优化步骤,进程内与一般的训练无异。

在各进程梯度计算完成之后,各进程需要将梯度进行汇总平均,然后再由 rank=0 的进程,将其 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值