代码参考:http://blog.youkuaiyun.com/wypblog/article/details/8119616
平衡二叉树(Balanced binary tree)是由阿德尔森-维尔斯和兰迪斯(Adelson-Velskii and Landis)于1962年首先提出的,所以又称为AVL树。
定义:平衡二叉树或为空树,或为如下性质的二叉排序树:
(1)左右子树深度之差的绝对值不超过1;
(2)左右子树仍然为平衡二叉树.
平衡因子BF=左子树深度-右子树深度.
平衡二叉树每个结点的平衡因子只能是1,0,-1。若其绝对值超过1,则该二叉排序树就是不平衡的。
如图所示为平衡树和非平衡树示意图:
二、平衡二叉树算法思想
若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。首先要找出插入新结点后失去平衡的最小子树根结点的指针。然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树。
失去平衡的最小子树是指以离插入结点最近,且平衡因子绝对值大于1的结点作为根的子树。假设用A表示失去平衡的最小子树的根结点,则调整该子树的操作可归纳为下列四种情况。
(1)LL型平衡旋转法
由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1增至2而失去平衡。故需进行一次顺时针旋转操作。即将A的左孩子B向右上旋转代替A作为根结点,A向右下旋转成为B的右子树的根结点。而原来B的右子树则变成A的左子树。
(2)RR型平衡旋转法
由于在A的右孩子C的右子树上插入结点F,使A的平衡因子由-1减至-2而失去平衡。故需进行一次逆时针旋转操作。即将A的右孩子C向左上旋转代替A作为根结点,A向左下旋转成为C的左子树的根结点。而原来C的左子树则变成A的右子树。
(3)LR型平衡旋转法
由于在A的左孩子B的右子数上插入结点F,使A的平衡因子由1增至2而失去平衡。故需进行两次旋转操作(先逆时针,后顺时针)。即先将A结点的左孩子B的右子树的根结点D向左上旋转提升到B结点的位置,然后再把该D结点向右上旋转提升到A结点的位置。即先使之成为LL型,再按LL型处理。
如图中所示,即先将圆圈部分先调整为平衡树,然后将其以根结点接到A的左子树上,此时成为LL型,再按LL型处理成平衡型。
(4)RL型平衡旋转法
由于在A的右孩子C的左子树上插入结点F,使A的平衡因子由-1减至-2而失去平衡。故需进行两次旋转操作(先顺时针,后逆时针),即先将A结点的右孩子C的左子树的根结点D向右上旋转提升到C结点的位置,然后再把该D结点向左上旋转提升到A结点的位置。即先使之成为RR型,再按RR型处理。
如图中所示,即先将圆圈部分先调整为平衡树,然后将其以根结点接到A的左子树上,此时成为RR型,再按RR型处理成平衡型。
平衡化靠的是旋转。参与旋转的是3个节点(其中一个可能是外部节点NULL),旋转就是把这3个节点转个位置。注意的是,左旋的时候p->right一定不为空,右旋的时候p->left一定不为空,这是显而易见的。
如果从空树开始建立,并时刻保持平衡,那么不平衡只会发生在插入删除操作上,而不平衡的标志就是出现bf == 2或者 bf == -2的节点。
#include <stdio.h>
#include <stdlib.h>
/************************************************************************/
/* 平衡二叉树---AVL */
/************************************************************************/
#define LH +1
#define EH 0
#define RH -1
typedef int ElemType;
typedef struct BSTNode{
ElemType data;
int bf;//balance flag
struct BSTNode *lchild,*rchild;
}*PBSTree;
void R_Rotate(PBSTree* p)
{
PBSTree lc = (*p)->lchild;
(*p)->lchild = lc->rchild;
lc->rchild = *p;
*p = lc;
}
void L_Rotate(PBSTree* p)
{
PBSTree rc = (*p)->rchild;
(*p)->rchild = rc->lchild;
rc->lchild = *p;
*p = rc;
}
void LeftBalance(PBSTree* T)
{
PBSTree lc,rd;
lc = (*T)->lchild;
switch (lc->bf)
{
case LH:
(*T)->bf = lc->bf = EH;
R_Rotate(T);
break;
case RH:
rd = lc->rchild;
switch(rd->bf)
{
case LH:
(*T)->bf = RH;
lc->bf = EH;
break;
case EH:
(*T)->bf = lc->bf = EH;
break;
case RH:
(*T)->bf = EH;
lc->bf = LH;
break;
}
rd->bf = EH;
L_Rotate(&(*T)->lchild);
R_Rotate(T);
break;
}
}
void RightBalance(PBSTree* T)
{
PBSTree lc,rd;
lc= (*T)->rchild;
switch (lc->bf)
{
case RH:
(*T)->bf = lc->bf = EH;
L_Rotate(T);
break;
case LH:
rd = lc->lchild;
switch(rd->bf)
{
case LH:
(*T)->bf = EH;
lc->bf = RH;
break;
case EH:
(*T)->bf = lc->bf = EH;
break;
case RH:
(*T)->bf = EH;
lc->bf = LH;
break;
}
rd->bf = EH;
R_Rotate(&(*T)->rchild);
L_Rotate(T);
break;
}
}
int InsertAVL(PBSTree* T,ElemType e,bool* taller)
{
if ((*T)==NULL)
{
(*T)=(PBSTree)malloc(sizeof(BSTNode));
(*T)->bf = EH;
(*T)->data = e;
(*T)->lchild = NULL;
(*T)->rchild = NULL;
}
else if (e == (*T)->data)
{
*taller = false;
return 0;
}
else if (e < (*T)->data)
{
if(!InsertAVL(&(*T)->lchild,e,taller))
return 0;
if(*taller)
{
switch ((*T)->bf)
{
case LH:
LeftBalance(T);
*taller = false;
break;
case EH:
(*T)->bf = LH;
*taller = true;
break;
case RH:
(*T)->bf = EH;
*taller = false;
break;
}
}
}
else
{
if(!InsertAVL(&(*T)->rchild,e,taller))
return 0;
if (*taller)
{
switch ((*T)->bf)
{
case LH:
(*T)->bf = EH;
*taller = false;
break;
case EH:
(*T)->bf = RH;
*taller = true;
break;
case RH:
RightBalance(T);
*taller = false;
break;
}
}
}
return 1;
}
bool FindNode(PBSTree root,ElemType e,PBSTree* pos)
{
PBSTree pt = root;
(*pos) = NULL;
while(pt)
{
if (pt->data == e)
{
//找到节点,pos指向该节点并返回true
(*pos) = pt;
return true;
}
else if (pt->data>e)
{
pt = pt->lchild;
}
else
pt = pt->rchild;
}
return false;
}
void InorderTra(PBSTree root)
{
if(root->lchild)
InorderTra(root->lchild);
printf("%d ",root->data);
if(root->rchild)
InorderTra(root->rchild);
}
int main()
{
int i,nArr[] = {1,23,45,34,98,9,4,35,23};
PBSTree root=NULL,pos;
bool taller;
for (i=0;i<9;i++)
{
InsertAVL(&root,nArr[i],&taller);
}
InorderTra(root);
if(FindNode(root,103,&pos))
printf("\n%d\n",pos->data);
else
printf("\nNot find this Node\n");
return 0;
}