信号量Semaphore

首先也来看看如何使用信号量,信号量Semaphore常用有三个函数,使用很方便。下面是这几个函数的原型和使用说明。

第一个CreateSemaphore

函数功能:创建信号量

函数原型:

HANDLECreateSemaphore(

 LPSECURITY_ATTRIBUTESlpSemaphoreAttributes,

 LONGlInitialCount,

 LONGlMaximumCount,

 LPCTSTRlpName

);

函数说明:

第一个参数表示安全控制,一般直接传入NULL

第二个参数表示初始资源数量。

第三个参数表示最大并发数量。

第四个参数表示信号量的名称,传入NULL表示匿名信号量。

 

第二个 OpenSemaphore

函数功能:打开信号量

函数原型:

HANDLEOpenSemaphore(

 DWORDdwDesiredAccess,

 BOOLbInheritHandle,

 LPCTSTRlpName

);

函数说明:

第一个参数表示访问权限,对一般传入SEMAPHORE_ALL_ACCESS。详细解释可以查看MSDN文档。

第二个参数表示信号量句柄继承性,一般传入TRUE即可。

第三个参数表示名称,不同进程中的各线程可以通过名称来确保它们访问同一个信号量。

 

第三个 ReleaseSemaphore

函数功能:递增信号量的当前资源计数

函数原型:

BOOLReleaseSemaphore(

 HANDLEhSemaphore,

 LONGlReleaseCount,  

 LPLONGlpPreviousCount 

);

函数说明:

第一个参数是信号量的句柄。

第二个参数表示增加个数,必须大于0且不超过最大资源数量。

第三个参数可以用来传出先前的资源计数,设为NULL表示不需要传出。

 

 

这里需要注意:当前资源数量大于0,表示信号量处于触发,等于0表示资源已经耗尽故信号量处于末触发。在对信号量调用等待函数时,等待函数会检查信号量的当前资源计数,如果大于0(即信号量处于触发状态),减1后返回让调用线程继续执行。一个线程可以多次调用等待函数来减小信号量 也就是说信号量的增加与减少是靠ReleaseSemaphore 增加信号量是WaitForsingleObject WaitForMutiObject

 

最后一个 信号量的清理与销毁

由于信号量是内核对象,因此使用CloseHandle()就可以完成清理与销毁了。

 

在经典多线程问题中设置一个信号量和一个关键段。用信号量处理主线程与子线程的同步,用关键段来处理各子线程间的互斥。详见代码:

#include <stdio.h>
#include <process.h>
#include <windows.h>
long g_nNum;
unsigned int __stdcall Fun(void *pPM);
const int THREAD_NUM = 10;
//信号量与关键段
HANDLE            g_hThreadParameter;
CRITICAL_SECTION  g_csThreadCode;
int main()
{
	printf("     经典线程同步 信号量Semaphore\n");
	printf(" -- by MoreWindows( http://blog.youkuaiyun.com/MoreWindows ) --\n\n");

	//初始化信号量和关键段
	g_hThreadParameter = CreateSemaphore(NULL, 0, 1, NULL);//当前0个资源,最大允许1个同时访问
	InitializeCriticalSection(&g_csThreadCode);

	HANDLE  handle[THREAD_NUM];	
	g_nNum = 0;
	int i = 0;
	while (i < THREAD_NUM) 
	{
		handle[i] = (HANDLE)_beginthreadex(NULL, 0, Fun, &i, 0, NULL);
		WaitForSingleObject(g_hThreadParameter, INFINITE);//等待信号量>0
		++i;
	}
	WaitForMultipleObjects(THREAD_NUM, handle, TRUE, INFINITE);
	
	//销毁信号量和关键段
	DeleteCriticalSection(&g_csThreadCode);
	CloseHandle(g_hThreadParameter);
	for (i = 0; i < THREAD_NUM; i++)
		CloseHandle(handle[i]);
	return 0;
}
unsigned int __stdcall Fun(void *pPM)
{
	int nThreadNum = *(int *)pPM;
	ReleaseSemaphore(g_hThreadParameter, 1, NULL);//信号量++

	Sleep(50);//some work should to do

	EnterCriticalSection(&g_csThreadCode);
	++g_nNum;
	Sleep(0);//some work should to do
	printf("线程编号为%d  全局资源值为%d\n", nThreadNum, g_nNum);
	LeaveCriticalSection(&g_csThreadCode);
	return 0;
}

可以看出来,信号量也可以解决线程之间的同步问题。

由于信号量可以计算资源当前剩余量并根据当前剩余量与零比较来决定信号量是处于触发状态或是未触发状态,因此信号量的应用范围相当广泛。


 

<think>首先,用户的问题是:“我想了解互斥锁mutex和信号量semaphore之间的区别请问mutex与semaphore的区别及使用场景”。所以,我需要专注于解释Mutex和Semaphore的区别及使用场景。系统级指令要求:-所有行内数学表达式使用$...$格式。-独立公式使用$$...$$格式并单独成段。-LaTeX语法正确。-使用中文回答。-生成相关问题。-在回答中引用的段落末尾自然地添加引用标识,例如[^1]。-回答结构清晰,帮助用户逐步解决问题。-尽量保证回答真实可靠。参考站内引用:-[^1]:Mutex和Semaphore的目的不同,但Mutex有时被误称为binarysemaphore。-[^2]:在C#多线程中,Mutex和Semaphore是同步工具,各有特点和适用场景。-[^3]:Mutex的函数在内核中定义,包括初始化、锁定等操作。-[^4]:互斥锁与信号量的定义、区别、使用,包括pthread示例。-[^5]:命名Mutex支持跨进程同步。我的回答需要基于这些引用,但不要直接复制;要自然地融入。用户的问题是区别和使用场景,所以我需要结构化地回答。回答结构:1.**介绍**:简要定义Mutex和Semaphore。2.**区别**:详细解释主要区别。-所有权:Mutex有所有者,Semaphore没有。-计数:Mutex是二进制(0或1),Semaphore可以计数。-使用场景:基于引用解释。3.**使用场景**:给出具体例子。4.**生成相关问题**:在末尾添加相关问题。5.**引用标识**:在引用段落末尾添加[^n]。确保使用中文。行内数学表达式:如果有数学内容,比如计数,可以用$...$。例如,Semaphore的计数可以是$n$,但问题中没有太多数学,所以可能少用。独立公式:如果没有复杂公式,可能不需要,但如果有,单独成段。LaTeX语法正确:例如,$x^2$。现在,构建回答大纲:-开头:直接回答问题。-主体:-Mutex的定义和特点。-Semaphore的定义和特点。-关键区别:基于引用[^1]和[^4],强调目的不同。-Mutex用于互斥访问共享资源。-Semaphore用于控制访问资源的线程数。-所有权:Mutex必须由锁定它的线程解锁(引用[^4])。-计数:Mutex是二进制,Semaphore可以有多个(引用[^3]和[^4])。-使用场景:-Mutex:保护临界区,如共享变量(引用[^4]示例)。-Semaphore:生产者-消费者问题,限制资源访问(引用[^2]和[^4])。-跨进程:Mutex可以命名用于跨进程(引用[^5]),Semaphore也可以但较少。-结尾:总结,并生成相关问题。生成相关问题:类似示例,3-4个问题,如:1.Mutex和Semaphore在性能上有什么差异?2.如何实现一个Semaphore?3.在分布式系统中如何使用同步机制?引用标识:在描述引用内容时添加。例如,“Mutex和Semaphore的目的不同,可能由于实现相似而被混淆[^1]。”确保回答真实可靠:基于标准知识,引用提供的信息。</think>### Mutex与Semaphore的区别及使用场景 Mutex(互斥锁)和Semaphore信号量)是多线程编程中常用的同步机制,用于协调线程对共享资源的访问,防止竞态条件。它们虽然表面上类似(例如,Mutex有时被误称为二进制信号量[^1]),但设计目的、实现和行为有本质区别。以下我将逐步解析它们的区别,并给出典型使用场景,帮助您清晰理解。 #### 1. **基本定义与核心区别** - **Mutex(互斥锁)**: - Mutex是二进制锁,状态为“锁定”或“解锁”($0$ 或 $1$),用于确保一次只有一个线程访问共享资源。Mutex具有“所有权”概念:只有锁定它的线程才能解锁它[^4]。这防止了其他线程误释放锁,从而避免死锁。例如,在Linux内核中,`mutex_lock`函数获取锁时,如果失败,线程会休眠等待[^3]。 - 数学表示:Mutex的状态可建模为二元变量 $s \in \{0, 1\}$,其中 $s=1$ 表示资源可用。 - **Semaphore信号量)**: - Semaphore是一个计数器,允许指定数量的线程同时访问资源(计数范围 $n \geq 0$)。它没有所有权概念,任何线程都可以释放信号量信号量常用于控制资源池(如数据库连接)[^4]。例如,初始值为 $k$ 的信号量表示最多 $k$ 个线程可并发访问。 - 数学表示:信号量计数 $c$ 满足 $c \geq 0$,操作基于 $P$(等待,减少计数)和 $V$(发信号,增加计数)原语。 关键区别总结: - **所有权**:Mutex要求锁的持有者解锁(线程绑定),而Semaphore可由任何线程释放[^4]。 - **计数**:Mutex是二进制($0/1$),Semaphore支持多计数($n \geq 0$)[^3][^4]。 - **目的**:Mutex专为互斥访问(保护临界区),Semaphore用于协调资源访问(如限制并发线程数)[^1][^2]。 - **实现复杂度**:Mutex通常更轻量,适合简单互斥;Semaphore更灵活,但可能引入更多开销。 #### 2. **使用场景分析** 基于实际应用,Mutex和Semaphore各有适用场景: - **Mutex的使用场景**: - **保护共享变量**:当多个线程需读写同一变量时(如计数器),使用Mutex确保原子操作。例如,在C语言中: ```c pthread_mutex_t mutex; pthread_mutex_init(&mutex, NULL); pthread_mutex_lock(&mutex); // 临界区:共享变量操作,如 num++ pthread_mutex_unlock(&mutex); ``` 这防止了数据竞争[^4]。 - **跨进程同步**:命名Mutex可用于不同进程间的互斥(如C#中的`Mutex mutex = new Mutex(false, "GlobalMutex")`),适用于分布式系统资源协调[^5]。 - 典型场景:文件写入、全局配置更新。 - **Semaphore的使用场景**: - **资源池管理**:当资源有限(如线程池或数据库连接)时,Semaphore控制最大并发数。例如,初始值为$5$的信号量允许最多5个线程同时访问。 - **生产者-消费者问题**:Semaphore协调生产者和消费者线程,通过两个信号量(一个表示缓冲区空位,一个表示数据项数)实现高效同步[^2][^4]。 - 典型场景:Web服务器请求处理、多线程下载。 为什么选择? - 用Mutex当需要严格互斥(如银行账户转账)。 - 用Semaphore当需允许多个线程共享资源(如打印机队列)[^2]。 #### 3. **注意事项** - **死锁风险**:Mutex的所有权特性减少了误解锁风险,但不正确使用(如嵌套锁)仍可导致死锁。Semaphore的计数机制在资源竞争激烈时可能引发优先级反转问题[^1]。 - **性能**:在单资源场景,Mutex通常更快(因轻量级);Semaphore在复杂协调中更高效[^3]。 - **跨平台**:Mutex(如C#的`Mutex`类)支持跨进程;Semaphore也可实现,但需额外配置[^5]。 总之,Mutex和Semaphore的核心区别在于所有权和计数机制:Mutex是“独占锁”,Semaphore是“资源门”。正确选择能提升并发程序可靠性[^1][^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值