-
#!/usr/sbin/env python
-
# -*- coding:utf-8 -*-
-
-
import math
-
-
# ItemCF算法
-
def ItemSimilarity(train):
-
C = dict()
-
N = dict()
-
for u,items in train.items():
-
for i in items.keys():
-
N[i] += 1
-
for j in items.keys():
-
if i == j:
-
continue
-
C[i][j] += 1
-
W = dict()
-
for i,related_items in C.items():
-
for j,cij in related_items.items():
-
W[i][j] = cij / math.sqrt( N[i] * N[j])
-
return W
-
-
# ItemCF-IUF算法
-
def ItemSimilarity_v2(train):
-
C = dict()
-
N = dict()
-
for u,items in train.items():
-
for i in items.keys():
-
N[i] += 1
-
for j in items.keys():
-
if i == j:
-
continue
-
C[i][j] += 1 / math.log(1+len(items)*1.0)
-
W = dict()
-
for i,related_items in C.items():
-
for j,cij in related_items.items():
-
W[i][j] = cij / math.sqrt( N[i] * N[j])
-
return W
-
-
def Recommend(train,user_id,W,K):
-
rank = dict()
-
ru = train[user_id]
-
for i,pi in ru.items():
-
for j,wj in sorted(W[i].items,key=itemgetter(1),reverse=True)[0:K]:
-
if j in ru:
-
continue
- rank[j] += pi*wj
- return rank
-
#!/usr/sbin/env python
-
# -*- coding:utf-8 -*-
-
import math
-
'''
-
基于UserCF的推荐算法
-
'''
-
# UserCF算法
-
def UserSimilarity(train):
-
item_users = dict()
-
for u,items in train.items():
-
for i in items.keys():
-
if i not in item_users:
-
item_users[i] = set()
-
item_users[i].add(u)
-
C = dict()
-
N = dict()
-
for i,users in item_users.items():
-
for u in users:
-
N[u] += 1
-
for v in users:
-
if u == v:
-
continue
-
C[u][v] += 1
-
W = dict()
-
for u,related_users in C.items():
-
for v,cuv in related_users.items():
-
W[u][v] = cuv / math.sqrt(N[u] * N[v])
-
return W
-
-
# User-IIF算法
-
def UserSimilarity_v2(train):
-
item_users = dict()
-
for u,items in train.items():
-
for i in items.keys():
-
if i not in item_users:
-
item_users[i] = set()
-
item_users[i].add(u)
-
C = dict()
-
N = dict()
-
for i,users in item_users.items():
-
for u in users:
-
N[u] += 1
-
for v in users:
-
if u == v:
-
continue
-
C[u][v] += 1 / math.log(1+len(users))
-
W = dict()
-
for u,related_users in C.items():
-
for v,cuv in related_users.items():
-
W[u][v] = cuv / math.sqrt(N[u] * N[v])
-
return W
-
-
def Recommend(user,train,W):
-
rank = dict()
-
interacted_items = train[user]
-
for v,wuv in sorted(W[u].items,key=itemgetter(1),reverse=True)[0:K]:
-
for i,rvi in train[v].items:
-
if i in interacted_items:
-
continue
-
rank[i] += wuv*rvi
- return rank
-
### 基于时间上下文
-
#!/usr/sbin/env python
-
# -*- coding:utf-8 -*-
-
-
import math
-
-
-
def RecentPopularity(records,alpha,T):
-
ret = dict()
-
for user,item,tm in records:
-
if tm >= T:
-
continue
-
addToDict(ret,item,1/(1.0+alpha*(T-tm)))
-
return ret
-
-
def addToDict(dicts,item,value):
-
pass
-
-
def ItemSimilarity(train,alpha):
-
C = dict()
-
N = dict()
-
for u,items in train.items():
-
for i,tui in items.items():
-
N[i] += 1
-
for j,tuj in items.items():
-
if i == j:
-
continue
-
C[i][j] += 1 / (1+alpha*abs(tui-tuj))
-
W = dict()
-
for i,related_items in C.items():
-
for j,cij in related_items.items():
-
W[i][j] = cij / math.sqrt(N[i] * N[j])
-
return W
-
-
def RecommendItemCF(train,user_id,W,K,t0):
-
rank = dict()
-
ru = train[user_id]
-
for i,pi in ru.items():
-
for j,wj in sorted(W[i].items(),\
-
key=itemgetter(1),reverse=True)[0:K]:
-
if j,tuj in ru.items():
-
continue
-
rank[j] += pi * wj / (1 + alpha * (t0 - tuj))
-
return rank
-
-
-
def UserSimilarity(train):
-
item_users = dict()
-
for u,items in train.items():
-
for i,tui in items.items():
-
if i not in item_users:
-
item_users[i] = dict()
-
item_users[i][u] = tui
-
-
C = dict()
-
N = dict()
-
for i,users in item_users.items():
-
for u,tui in users.items():
-
N[u] += 1
-
for v,tvi in users.items():
-
if u == v:
-
continue
-
C[u][v] += 1 / (1 + alpha * abs(tui - tvi))
-
W = dict()
-
for u,related_users in C.items():
-
for v,cuv in related_users.items():
-
W[u][v] = cuv / math.sqrt(N[u] * N[v])
-
return W
-
-
def RecommendUserCF(user,T,train,W):
-
rank = dict()
-
interacted_items = train[user]
-
for v,wuv in sorted(W[u].items,key=itemgetter(1),\
-
reverse=True)[0:K]:
-
for i,tvi in train[v].items:
-
if i in interacted_items:
-
continue
-
rank[i] += wuv / (1 + alpha * (T - tvi))
- return rank
### 基于LFM推荐算法
-
#!/usr/bin/env python
-
import random
-
-
'''
-
items => {'12':'PHP','1203':'Storm','123':'Ubuntu'}
-
items_pool => [12,32,121,324,532,123,53,1203,429,2932]
-
user_items => {'1010':[12,1203,123,429]}
-
'''
-
def RandomSelectNagativeSample(items):
-
ret = dict()
-
for i in items.keys():
-
ret[i] = 1
-
n = 0
-
for i in range(0,len(items)*3):
-
item = items_pool[random.randint(0,len(items_pool)-1)]
-
if item in ret:
-
continue
-
ret[item] = 0
-
n += 1
-
if n > len(items):
-
break
-
return ret
-
-
-
def InitModel(user_items,F):
-
P = dict()
-
Q = dict()
-
for u in user_items.keys():
-
if u not in P:
-
P[u] = {}
-
for f in range(0,F):
-
P[u][f] = 1
-
-
items = user_items.values()
-
itemLen = len(items[0])
-
i = 0
-
while i< itemLen:
-
ii = items[0][i]
-
if ii not in Q:
-
Q[ii] = {}
-
for f in range(0,F):
-
Q[ii][f] = 1
-
i += 1
-
return [P,Q]
-
-
-
def LatentFactorModel(user_items,F,N,alpha,lambda1):
-
[P,Q] = InitModel(user_items,F)
-
for setup in range(0,N):
-
for user,items in user_items.items():
-
samples = RandomSelectNagativeSample(items)
-
for item,rui in samples.items():
-
eui = rui - Predict(user,item)
-
for f in range(0,F):
-
P[user][f] += alpha * (eui * Q[item][f] - lambda1 * P[user][f])
-
Q[item][f] += alpha * (eui * P[user][f] - lambda1 * Q[item][f])
-
alpha *= 0.9
-
return [P,Q]
-
-
-
def Recommend(user,P,Q):
-
rank = dict()
-
for f,puf in P[user].items():
-
for i,pfi in Q[f].items():
-
if i not in rank:
-
rank[i] += puf * qfi
-
return rank
-
-
-
-
def PersonalRank(G,alpha,root,maxsetup):
-
rank = dict()
-
#rank = {x:0 for x in G.keys()}
-
rank = rank.fromkeys(G.keys(),0)
-
rank[root] = 1
-
for k in range(maxsetup):
-
tmp = dict()
-
#tmp = {x:0 for x in G.keys()}
-
tmp = tmp.fromkeys(G.keys(),0)
-
for i,ri in G.items():
-
for j,wij in ri.items():
-
if j not in tmp:
-
tmp[j] = 0
-
tmp[j] += alpha * rank[i]/(1.0*len(ri))
-
if j == root:
-
tmp[j] += 1 - alpha
-
rank = tmp
-
-
print 'iter:' + str(k) + "\t",
-
for key,value in rank.items():
-
print "%s:%.3f,\t" % (key,value),
-
print
-
return rank
-
-
if __name__ == '__main__':
-
G = {'A':{'a':1,'c':1},
-
'B':{'a':1,'b':1,'c':1,'d':1},
-
'C':{'c':1,'d':1},
-
'a':{'A':1,'B':1},
-
'b':{'B':1},
-
'c':{'A':1,'B':1,'C':1},
-
'd':{'B':1,'C':1}}
-
PersonalRank(G,0.85,'A',20)
-
-
'''
-
-
#items_pool = {'12':'PHP','32':'Nginx','121':'Apache','324':'Erlang','532':'Linux','123':'Ubuntu','53':'Java','1203':'Storm','429':'Kafka','2932':'Flume'}
-
items_pool = [12,32,121,324,532,123,53,1203,429,2932]
-
items = {'12':'PHP','1203':'Storm','123':'Ubuntu'}
-
user_items = {'1010':[12,1203,123,429]}
-
-
-
#print RandomSelectNagativeSample(items)
-
print InitModel(user_items,4)
- '''
#### 基于图的推荐算法
-
#!/usr/sbin/env python
-
# -*- coding:utf-8 -*-
-
'''
-
基于图的推荐算法,二分图
-
'''
-
-
-
def PersonalRank(G,alpha,root,maxsetup):
-
rank = dict()
-
#rank = {x:0 for x in G.keys()}
-
rank = rank.fromkeys(G.keys(),0)
-
rank[root] = 1
-
for k in range(maxsetup):
-
tmp = dict()
-
#tmp = {x:0 for x in G.keys()}
-
tmp = tmp.fromkeys(G.keys(),0)
-
for i,ri in G.items():
-
for j,wij in ri.items():
-
if j not in tmp:
-
tmp[j] = 0
-
tmp[j] += alpha * rank[i]/(1.0*len(ri))
-
if j == root:
-
tmp[j] += 1 - alpha
-
rank = tmp
-
-
print 'iter:' + str(k) + "\t",
-
for key,value in rank.items():
-
print "%s:%.3f,\t" % (key,value),
-
print
-
return rank
-
-
if __name__ == '__main__':
-
G = {'A':{'a':1,'c':1},
-
'B':{'a':1,'b':1,'c':1,'d':1},
-
'C':{'c':1,'d':1},
-
'a':{'A':1,'B':1},
-
'b':{'B':1},
-
'c':{'A':1,'B':1,'C':1},
-
'd':{'B':1,'C':1}}
- PersonalRank(G,0.85,'C',20)
#### 基于标签的推荐算法
-
#!/usr/sbin/env python
-
# -*- coding:utf-8 -*-
-
-
import math
-
-
#标签流行度算法
-
def TagPopularity(records):
-
tagfreq = dict()
-
for user,item,tag in records:
-
if tag not in tagfreq:
-
tagfreq[tag] = 1
-
else:
-
tagfreq[tag] += 1
-
return tagfreq
-
-
#物品相似度余弦算法
-
def CosineSim(item_tags,i,j):
-
ret = 0
-
for b,wib in item_tags[i].items():
-
if b in item_tags[j]:
-
ret += wib * item_tags[j][b]
-
ni = 0
-
nj = 0
-
for b,w in item_tags[i].items():
-
ni += w * w
-
for b,w in item_tags[j].items():
-
nj += w * w
-
if ret == 0:
-
return 0
-
return ret / math.sqrt(ni * nj)
-
-
#推荐物品的多样性算法
-
def Diversity(item_tags,recommend_items):
-
ret = 0
-
n = 0
-
for i in recommend_items.keys():
-
for j in recommend_items.keys():
-
if i == j:
-
continue
-
ret += CosineSim(item_tags,i,j)
-
n += 1
-
return ret / (n * 1.0)
-
-
-
def addValueToMat(dicts,index,k,v):
-
if index not in dicts:
-
dicts[index] = dict()
-
dicts[index][k] = v
-
else:
-
if k not in dicts[index]:
-
dicts[index][k] = v
-
else:
-
dicts[index][k] += v
-
-
def InitStat(records):
-
user_tags = dict() #存储 user_tags[u][b] = n(u,b)
-
tag_items = dict() # tag_items[b][i] = n(b,i)
-
user_items = dict()
-
for user,item,tag in records.items():
-
addValueToMat(user_tags,user,tag,1)
-
addValueToMat(tag_items,tag,item,1)
-
addValueToMat(user_items,user,item,1)
-
-
-
def Recommend(user):
-
recommend_items = dict()
-
tagged_items = user_items[user]
-
for tag,wut in user_tags[user].items():
-
# wut = wut*1.0/math.log(1+len(tag_users[tag])) #TagBasedTFIDF and TagBasedTFIDF++
-
for item,wti in tag_items[tag].items():
-
# wti = wti*1.0/math.log(1+len(user_items[user])) #TagBasedTFIDF++
-
if item in tagged_items:
-
continue
-
if item not in recommend_items:
-
recommend_items[item] = wut * wti
-
else:
-
recommend_items[item] += wut * wti
-
return recommend_items
-
-
-
if __name__ == "main":
-
user_tags = dict()
-
user_items = dict()
-
tag_items = dict()
-
-
records = dict()
-
user = '1220';
-
-
InitStat(records)
- rec_items = Recommend(user)