CompletableFuture 使用详解

本文详细介绍了Java中的CompletableFuture类,包括其提供的异步操作方法如runAsync、supplyAsync,以及处理结果的各种方法如thenApply、handle等。通过示例代码解释了如何使用这些方法来构建复杂的异步工作流。

 

1、 runAsync 和 supplyAsync方法

CompletableFuture 提供了四个静态方法来创建一个异步操作。

public static CompletableFuture<Void> runAsync(Runnable runnable)
public static CompletableFuture<Void> runAsync(Runnable runnable, Executor executor)
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier)
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier, Executor executor)

没有指定Executor的方法会使用ForkJoinPool.commonPool() 作为它的线程池执行异步代码。如果指定线程池,则使用指定的线程池运行。以下所有的方法都类同。

  • runAsync方法不支持返回值。
  • supplyAsync可以支持返回值。

示例

//无返回值
public static void runAsync() throws Exception {
    CompletableFuture<Void> future = CompletableFuture.runAsync(() -> {
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
        }
        System.out.println("run end ...");
    });
    
    future.get();
}

//有返回值
public static void supplyAsync() throws Exception {         
    CompletableFuture<Long> future = CompletableFuture.supplyAsync(() -> {
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
        }
        System.out.println("run end ...");
        return System.currentTimeMillis();
    });

    long time = future.get();
    System.out.println("time = "+time);
}

2、计算结果完成时的回调方法

当CompletableFuture的计算结果完成,或者抛出异常的时候,可以执行特定的Action。主要是下面的方法:

public CompletableFuture<T> whenComplete(BiConsumer<? super T,? super Throwable> action)
public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T,? super Throwable> action)
public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T,? super Throwable> action, Executor executor)
public CompletableFuture<T> exceptionally(Function<Throwable,? extends T> fn)

可以看到Action的类型是BiConsumer<? super T,? super Throwable>它可以处理正常的计算结果,或者异常情况。

whenComplete 和 whenCompleteAsync 的区别:
whenComplete:是执行当前任务的线程执行继续执行 whenComplete 的任务。
whenCompleteAsync:是执行把 whenCompleteAsync 这个任务继续提交给线程池来进行执行。

示例

public static void whenComplete() throws Exception {
    CompletableFuture<Void> future = CompletableFuture.runAsync(() -> {
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
        }
        if(new Random().nextInt()%2>=0) {
            int i = 12/0;
        }
        System.out.println("run end ...");
    });
    
    future.whenComplete(new BiConsumer<Void, Throwable>() {
        @Override
        public void accept(Void t, Throwable action) {
            System.out.println("执行完成!");
        }
        
    });
    future.exceptionally(new Function<Throwable, Void>() {
        @Override
        public Void apply(Throwable t) {
            System.out.println("执行失败!"+t.getMessage());
            return null;
        }
    });
    
    TimeUnit.SECONDS.sleep(2);
}

3、 thenApply 方法

当一个线程依赖另一个线程时,可以使用 thenApply 方法来把这两个线程串行化。

public <U> CompletableFuture<U> thenApply(Function<? super T,? extends U> fn)
public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn)
public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn, Executor executor)

Function<? super T,? extends U>
T:上一个任务返回结果的类型
U:当前任务的返回值类型

示例

private static void thenApply() throws Exception {
    CompletableFuture<Long> future = CompletableFuture.supplyAsync(new Supplier<Long>() {
        @Override
        public Long get() {
            long result = new Random().nextInt(10
<think>嗯,用户想了解CompletableFuture的原理和详细实现,特别是Java异步编程方面的深入分析。首先,我需要回顾一下之前提供的引用内容,看看有哪些信息可以利用。引用[1]提到CompletableFuture是Java 8引入的,用于异步编程,属于java.util.concurrent包,相比传统Future更灵活,支持链式调用、任务合并和异常处理。引用[2]强调了它的高效异步模式和并发编程的简洁性。引用[3]指出CompletableFuture有很多方法和内部类,需要分步分析。引用[4]提到了Java并发的发展,包括ForkJoin框架等。 用户的问题是关于原理和实现的详细解析,所以需要深入讨论内部机制,比如如何实现异步任务的管理、回调链的处理、线程池的使用,以及如何组合多个任务。可能还需要涉及CompletableFuture的状态机、依赖关系处理、异常传播机制等。 首先,CompletableFuture基于ForkJoinPool,这点应该在实现原理部分提到。然后,它的核心结构可能涉及到每个阶段(stage)作为一个节点,形成链表或栈结构来处理依赖。状态管理方面,可能用volatile变量来保存结果和状态变化,确保可见性。 另外,需要解释CompletableFuture如何通过thenApply、thenAccept等方法链式组合任务,这些方法如何注册回调,并在前一个阶段完成时触发后续操作。这里可能涉及CompletionStage接口的实现,以及各种不同类型的Completion子类,比如UniApply、BiApply等,处理不同的依赖情况。 异常处理也是一个重点,CompletableFuture如何捕获异常并传递给后续的exceptionally或handle方法。需要说明当某个阶段出现异常时,后续依赖的阶段如何被触发,并处理异常结果。 线程池的集成部分,用户可能想知道默认使用的线程池,以及如何自定义。比如,默认使用ForkJoinPool.commonPool(),但也可以指定自定义的Executor。在实现中,如何将任务提交到线程池,并在任务完成后执行回调。 还有,组合多个CompletableFuture的方法,如allOf、anyOf,这些是如何实现的,可能涉及内部计数器或条件判断,等待所有或任意一个Future完成。 另外,性能优化方面,CompletableFuture如何减少线程阻塞,通过非阻塞的回调机制提高效率。对比传统的Future.get(),CompletableFuture通过回调通知机制避免了阻塞等待。 可能用户还想了解与响应式编程的区别,或者与其他异步框架如RxJava的不同之处,但根据问题,重点应放在CompletableFuture本身的原理和实现细节上。 需要确保回答结构清晰,分点讲解核心原理、状态管理、依赖处理、线程池机制、组合任务和异常处理等部分。同时,结合代码示例说明,比如创建异步任务的方法,链式调用的例子,以及异常处理的示例。 最后,生成相关问题时要围绕用户可能的进一步疑问,比如与传统的Future对比、如何选择线程池、实际应用场景、性能优化方法、异常处理最佳实践,以及和响应式编程的结合等。</think># CompletableFuture原理与实现深度解析 ## 一、核心实现原理 CompletableFuture基于观察者模式构建异步任务链,内部采用$stage$链表结构管理任务依赖关系。每个阶段通过$UniCompletion$/$BiCompletion$等内部类实现回调注册,采用无锁CAS操作保证线程安全[^3]。 状态机实现包含三个关键变量: $$ \begin{cases} result & \text{存储计算结果/异常对象} \\ stack & \text{等待触发的回调函数栈} \\ nest & \text{防止递归调用计数器} \end{cases} $$ ## 二、任务执行流程 1. **异步启动**:通过`supplyAsync()`创建任务时,默认使用$ForkJoinPool.commonPool()$[^4] ```java CompletableFuture<String> cf = CompletableFuture.supplyAsync(() -> { // 异步任务逻辑 return "result"; }); ``` 2. **依赖传播**:每个`thenApply()`调用生成新的$UniApply$节点并压入前驱的栈顶 3. **完成触发**:当前任务完成后,通过`postComplete()`方法反向遍历栈节点触发后续操作 ## 三、线程池集成机制 | 配置方式 | 实现类 | 适用场景 | |-------------------|-------------------------|-----------------------| | 默认线程池 | ForkJoinPool.commonPool | CPU密集型任务 | | 自定义线程池 | ThreadPoolExecutor | IO密集型任务 | | 直接执行 | Runnable::run | 快速回调(同线程执行) | ## 四、组合任务实现 1. **AND聚合**:`allOf()`通过$BiRelay$合并多个future结果 2. **OR聚合**:`anyOf()`使用$AtomicReference$竞争设置首个完成结果 3. **嵌套组合**:`thenCompose()`通过$UniCompose$实现future级联 ## 五、异常处理机制 1. 异常传播路径:通过$AltResult$包装异常对象沿任务链传递 2. 恢复机制:`exceptionally()`注册的恢复函数可返回替代值 3. 全局捕获:`handle()`方法同时接收结果和异常参数 ```java CompletableFuture.supplyAsync(() -> { if (new Random().nextBoolean()) throw new RuntimeException("模拟异常"); return "data"; }).exceptionally(ex -> { System.out.println("捕获异常: " + ex.getMessage()); return "default"; }); ``` ## 六、性能优化设计 1. 延迟提交:使用$LazyExecutor$减少线程切换开销 2. 栈优化:采用Treiber栈结构提升并发压栈性能[^2] 3. 对象复用:内部$ASYNC$/$NIL$等标记对象减少内存分配
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值