动态规划1005

探讨如何通过算法确定由不同尺寸的方块堆叠成的最高塔的高度,以帮助猴子够到屋顶上的香蕉。涉及方块堆叠规则及最长递增子序列问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.<br><br>The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. <br><br>They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked. <br><br>Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.<br>
 

Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,<br>representing the number of different blocks in the following data set. The maximum value for n is 30.<br>Each of the next n lines contains three integers representing the values xi, yi and zi.<br>Input is terminated by a value of zero (0) for n.<br>
 

Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".<br>
 

Sample Input
1 10 20 30 2 6 8 10 5 5 5 7 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 5 31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 0
 

Sample Output
Case 1: maximum height = 40 Case 2: maximum height = 21 Case 3: maximum height = 28 Case 4: maximum height = 342


代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

struct node
{
    int x;
    int y;
    int z;
}nod[105];

int dp[105];

int cmp(node a,node b)
{
    if(a.x<b.x) return 1;
    if(a.x==b.x&&a.y<b.y) return 1;
    return 0;
}

int main()
{
    int n,cas=1;
    while(cin>>n&&n>0)
    {
        int i,j,m=0;
        int a[3];
        for(i=0;i<n;i++)
        {
            cin>>a[0]>>a[1]>>a[2];     //每种有6种情况,但是由于x1<x2&&y1<y2可以缩减为3种情况
            nod[m].x=max(a[0],a[1]),nod[m].y=min(a[0],a[1]),nod[m++].z=a[2];
            nod[m].x=max(a[1],a[2]),nod[m].y=min(a[1],a[2]),nod[m++].z=a[0];
            nod[m].x=max(a[0],a[2]),nod[m].y=min(a[0],a[2]),nod[m++].z=a[1];
        }

        sort(nod,nod+m,cmp);
        for(i=0;i<m;i++)
        {
            int ma=0;
            for(j=0;j<i;j++)
            {
                if(nod[j].x<nod[i].x&&nod[j].y<nod[i].y)
                    ma=max(ma,dp[j]);
            }
            dp[i]=ma+nod[i].z;
        }

        int res=0;
        for(i=0;i<m;i++)
            res=max(res,dp[i]);

        printf("Case %d: maximum height = %d\n",cas++,res);
    }
    return 0;
}

内容概要:本文深入解析了扣子COZE AI编程及其详细应用代码案例,旨在帮助读者理解新一代低门槛智能体开发范式。文章从五个维度展开:关键概念、核心技巧、典型应用场景、详细代码案例分析以及未来发展趋势。首先介绍了扣子COZE的核心概念,如Bot、Workflow、Plugin、Memory和Knowledge。接着分享了意图识别、函数调用链、动态Prompt、渐进式发布及监控可观测等核心技巧。然后列举了企业内部智能客服、电商导购助手、教育领域AI助教和金融行业合规质检等应用场景。最后,通过构建“会议纪要智能助手”的详细代码案例,展示了从需求描述、技术方案、Workflow节点拆解到调试与上线的全过程,并展望了多智能体协作、本地私有部署、Agent2Agent协议、边缘计算插件和实时RAG等未来发展方向。; 适合人群:对AI编程感兴趣的开发者,尤其是希望快速落地AI产品的技术人员。; 使用场景及目标:①学习如何使用扣子COZE构建生产级智能体;②掌握智能体实例、自动化流程、扩展能力和知识库的使用方法;③通过实际案例理解如何实现会议纪要智能助手的功能,包括触发器设置、下载节点、LLM节点Prompt设计、Code节点处理和邮件节点配置。; 阅读建议:本文不仅提供了理论知识,还包含了详细的代码案例,建议读者结合实际业务需求进行实践,逐步掌握扣子COZE的各项功能,并关注其未来的发展趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值