Moving Tables

本文介绍了一个关于在狭窄走廊中高效移动大量桌子的问题,并提供了两种解法。第一种解法通过排序来最小化移动时间,第二种解法则通过计算最大重叠来实现贪心策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Moving Tables
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 33739 Accepted: 11268

Description

The famous ACM (Advanced Computer Maker) Company has rented a floor of a building whose shape is in the following figure.

The floor has 200 rooms each on the north side and south side along the corridor. Recently the Company made a plan to reform its system. The reform includes moving a lot of tables between rooms. Because the corridor is narrow and all the tables are big, only one table can pass through the corridor. Some plan is needed to make the moving efficient. The manager figured out the following plan: Moving a table from a room to another room can be done within 10 minutes. When moving a table from room i to room j, the part of the corridor between the front of room i and the front of room j is used. So, during each 10 minutes, several moving between two rooms not sharing the same part of the corridor will be done simultaneously. To make it clear the manager illustrated the possible cases and impossible cases of simultaneous moving.

For each room, at most one table will be either moved in or moved out. Now, the manager seeks out a method to minimize the time to move all the tables. Your job is to write a program to solve the manager's problem.

Input

The input consists of T test cases. The number of test cases ) (T is given in the first line of the input file. Each test case begins with a line containing an integer N , 1 <= N <= 200, that represents the number of tables to move.
Each of the following N lines contains two positive integers s and t, representing that a table is to move from room number s to room number t each room number appears at most once in the N lines). From the 3 + N -rd
line, the remaining test cases are listed in the same manner as above.

Output

The output should contain the minimum time in minutes to complete the moving, one per line.

Sample Input

3 
4 
10 20 
30 40 
50 60 
70 80 
2 
1 3 
2 200 
3 
10 100 
20 80 
30 50 

Sample Output

10
20
30

解法一:说一下这个题目的坑以及解法:

1.s可能小于t

2.如果s为偶数,则s--;如果t为奇数,则t++

3.有点类似于调度问题吧,按照s排序

#include<iostream>
#include<memory.h>
using namespace std;
int start[210];
int end2[210];
int visited[210];
int pratition(int p,int q){
    int baseStart = start[p];
    int baseend2 = end2[p];
    while(p < q){
        while(p < q && start[q] >= baseStart){
            q--;
        }
        if(p < q){
            start[p] = start[q];
            end2[p] = end2[q];
            p++;
        }
        while(p < q && start[p] <= baseStart)
            p++;
        if(p < q){
            start[q] = start[p];
            end2[q] = end2[p];
            q--;
        }
    }
    start[p] = baseStart;
    end2[p] = baseend2;
    return p;
}
void quickSort(int p,int q){
    if(p < q){
        int r = pratition(p,q);
        quickSort(p,r-1);
        quickSort(r+1,q);
    }
}
int main(){
    int total_case;
    cin>>total_case;

    while(total_case--){
        int total_num;
        cin>>total_num;

        for(int i = 0; i < total_num; i++){
            cin>>start[i];
            cin>>end2[i];
            if(start[i] > end2[i]){
                int temp = start[i];
                start[i] = end2[i];
                end2[i] = temp;
            }
            if(start[i]%2 == 0){
                start[i]--;
            }
            if(end2[i]%2){
                end2[i]++;
            }
        }
        quickSort(0,total_num-1);
        int result = 0;
        memset(visited,0,sizeof(visited));
        for(int i = 0; i < total_num;i++){
            if(!visited[i]){
                visited[i] = 1;
                result++;
                int k = i;
                for(int j = i+1;j < total_num;j++){
                    if(!visited[j] && start[j] > end2[k]){
                        visited[j] = 1;
                        k = j;
                    }
                }
            }
        }
        cout<<10*result<<endl;
    }

}
解法二:最大的重叠,暴力贪心的感觉。
#include<iostream>
#include<memory.h>
using namespace std;
int start[210];
int end2[210];
int visited[210];
int main(){
    int total_case;
    cin>>total_case;

    while(total_case--){
        int total_num;
        cin>>total_num;
        int result = 0;
        memset(visited,0,sizeof(visited));
        for(int i = 0; i < total_num; i++){
            cin>>start[i];
            cin>>end2[i];
            if(start[i] > end2[i]){
                int temp = start[i];
                start[i] = end2[i];
                end2[i] = temp;
            }
            if(start[i]%2 == 0){
                start[i]--;
            }
            if(end2[i]%2){
                end2[i]++;
            }

            for(int j = start[i]; j <= end2[i] ; j++){
                visited[j]++;
            }

        }
        for(int i = 0; i < 210 ; i++){
            if(result < visited[i]){
                result = visited[i];
            }
        }
        cout<<10*result<<endl;
    }

}


### 7-2 Moving Tables C语言解决方案 #### 算法思路 为了最小化移动所有桌子所需的时间,采用贪心算法是一个有效的方法。核心思想是在任何时刻尽可能多地利用走廊资源来搬运桌子。具体来说: 对于每一个需要移动的桌子,记录下它所占用的走廊区间的起始位置和结束位置,并统计这些区间重叠的最大次数。因为每次只能有一个桌子通过同一段走廊,所以最大重叠数决定了最少需要多少次5分钟才能完成全部桌子的移动。 #### 实现方法 下面展示了一个完整的C语言程序用于求解此问题[^1]。 ```c #include <stdio.h> int main() { int n, m; scanf("%d", &n); while (n--) { // 处理多组测试数据 int i, j, k, t; int begin, end; int a[200] = {0}; // 记录各个时间段是否有桌椅经过 scanf("%d", &m); for (i = 0; i < m; ++i) { scanf("%d%d", &begin, &end); if (begin > end) { // 如果起点大于终点,则交换两者的位置 t = begin; begin = end; end = t; } // 统计每个时间片内的最大并发量 for (k = (begin - 1) / 2; k <= (end - 1) / 2; ++k){ a[k]++; } } int max = -1; // 找到最大的并发数量作为最终的结果乘以单位时间得到总耗时 for (i = 0; i < 200; ++i) { if (a[i] > max) { max = a[i]; } } printf("%d\n", max * 10); // 输出结果并换行 } return 0; } ``` 这段代码实现了上述提到的逻辑流程,能够有效地处理多个案例的数据输入,并给出相应的最优解。需要注意的是,在实际编程过程中应当仔细考虑边界条件以及变量初始化等问题,确保程序运行稳定可靠[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值