2.1.24 Single Number II
描述
Given an array of integers, every element appears three times except for one. Find that single one.
Note: Your algorithm should have a linear runtime complexity. Could you implement it without usingextra memory?
2.1数组37分析
本题考察的是位运算。
方法1:创建一个长度为sizeof(int)的数组count[sizeof(int)],count[i]表示所有元素的1在i 位出现的次数。如果count[i]是3的整数倍,则忽略;否则就把该位取出来组成答案。
方法2:用ones记录到当前处理的元素为止,二进制1出现“1次”(mod 3之后的1)的有哪些二进制位;用twos记录到当前计算的变量为止,二进制1出现“2次”(mod 3之后的2)的有哪些二进制位。当ones和twos中的某一位同时为1时表示该二进制位上1出现了3次,此时需要清零。即用二进制模拟三进制运算。最终ones记录的是最终结果。
代码1
// LeetCode, Single Number II // 方法1,时间复杂度O(n),空间复杂度O(1)class Solution { public:
int singleNumber(int A[], int n) { const int W = sizeof(int) * 8; // 整数字长int count[W]; //每个位上1出现的次数fill_n(&count[0], W, 0); for (int i = 0; i < n; i++) {
for (int j = 0; j < W; j++) { count[j] += (A[i] >> j) & 1; count[j] %= 3;
}}
int result = 0; for (int i = 0; i < W; i++) {
result += (count[i] << i); }
return result; }
};
代码2
// LeetCode, Single Number II // 方法2,时间复杂度O(n),空间复杂度O(1)class Solution { public:
int singleNumber(int A[], int n) { int ones = 0, twos = 0, threes = 0; for (int i = 0; i < n; ++i) {
twos |= (ones & A[i]); ones ^= A[i]; threes = ~(ones & twos); ones &= threes;
twos &= threes; }
return ones; }
};
// LeetCode, Single Number II
// 方法1,时间复杂度O(n),空间复杂度O(1)class
Solution {
public:
int singleNumber(int A[], int n) {
const int W = sizeof(int) * 8; // 整数字长int count[W]; //每个位上1出现的次数fill_n(&count[0],
W, 0);
for (int i = 0; i < n; i++) {
for (int j = 0; j < W; j++) {
count[j] += (A[i] >> j) & 1;
count[j] %= 3;
}}
int result = 0;
for (int i = 0; i < W; i++) {
result += (count[i] << i);
}
return result;
}
};