1410282310-hd-Seinfeld



Seinfeld

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1413    Accepted Submission(s): 697


Problem Description
I’m out of stories. For years I’ve been writing stories, some rather silly, just to make simple problems look difficult and complex problems look easy. But, alas, not for this one.
You’re given a non empty string made in its entirety from opening and closing braces. Your task is to find the minimum number of “operations” needed to make the string stable. The definition for being stable is as follows:
1. An empty string is stable.
2. If S is stable, then {S} is also stable.
3. If S and T are both stable, then ST (the concatenation of the two) is also stable.
All of these strings are stable: {}, {}{}, and {{}{}}; But none of these: }{, {{}{, nor {}{.
The only operation allowed on the string is to replace an opening brace with a closing brace, or visa-versa.
 

Input
Your program will be tested on one or more data sets. Each data set is described on a single line. The line is a non-empty string of opening and closing braces and nothing else. No string has more than 2000 braces. All sequences are of even length.
The last line of the input is made of one or more ’-’ (minus signs.)

 

Output
For each test case, print the following line:
k. N
Where k is the test case number (starting at one,) and N is the minimum number of operations needed to convert the given string into a balanced one.
Note: There is a blank space before N.
 

Sample Input
}{ {}{}{} {{{} ---
 

Sample Output
1. 2 2. 0 3. 1
 题目大意
        有一堆括号,{}这样算配对,{{,}},}{这样都算不配对,对于一组不配对的括号,可以通过变化括号的方向来使其配对,变一个算一次,求最少的变化次数。
解题思路
       对于{}这种情况,可以将其略去。这样不配对的括号组可以有以下三种情况1.{{{{2.}}}}3.}}}}{{{{当然也可以合并为一种情况n...}{...m。对于}}或者{{只需改变一次,而对于}{则须改变两次。
      这道题主要用到了栈的知识。
代码
#include<stdio.h>
#include<string.h>
char s[2200],c[2200];
int main()
{
	int len1,len2,len3;
	int i,j,k=1;
	int sum,top;
	while(scanf("%s",s)&&s[0]!='-')
	{
		len1=strlen(s);
		top=1;
		memset(c,0,sizeof(c)); 
		c[0]=s[0];
		for(i=1;i<len1;i++)
		{
			c[top]=s[i];
			//if(s[i-1]=='{'&&s[i]=='}')   错误之处 
			//测试数据{{}}
			if(c[top-1]=='{'&&c[top]=='}')
			//是否入栈是让栈组比较的。 
			    top--;
			else
				top++;
		}
		len2=0;
		for(i=0;i<top;i++)
		{
		    if(c[i]=='}')
		        len2++;
		    else
		        break;
		}
		len3=top-len2;
		/*if(len1%2==0)
		    sum=len1/2+len2/2;
		else
		    sum=len1/2+len2/2+2; 
		这样判断的话要额外考虑栈为空的情况*/ 
		sum=(len2+1)/2+(len3+1)/2;
		printf("%d. ",k);
		k++;
		printf("%d\n",sum);
	}
	return 0;
} 

 
基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值