图像傅里叶变换

傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法,比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。印象中,傅立叶变换在图像处理以下几个话题都有重要作用:1.图像增强与图像去噪绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘;2.图像分割之边缘检测提取图像高频分量3.图像特征提取:形状特征:傅里叶描述子纹理特征:直接通过傅里叶系数来计算纹理特征其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性4.图像压缩可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换;傅立叶变换傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里面);时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变;频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输);卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点) 信号在频率域的表现在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。当频率为0时,表示直流信号,没有变化。因此,频率的大小反应了信号的变化快慢。高频分量解释信号的突变部分,而低频分量决定信号的整体形象。在图像处理中,频域反应了图像在空域灰度变化剧烈程度,也就是图像灰度的变化速度,也就是图像的梯度大小。对图像而言,图像的边缘部分是突变部分,变化较快,因此反应在频域上是高频分量;图像的噪声大部分情况下是高频部分;图像平缓变化部分则为低频分量。也就是说,傅立叶变换提供另外一个角度来观察图像,可以将图像从灰度分布转化到频率分布上来观察图像的特征。书面一点说就是,傅里叶变换提供了一条从空域到频率自由转换的途径。对图像处理而言,以下概念非常的重要:图像高频分量:图像突变部分;在某些情况下指图像边缘信息,某些情况下指噪声,更多是两者的混合;低频分量:图像变化平缓的部分,也就是图像轮廓信息高通滤波器:让图像使低频分量抑制,高频分量通过低通滤波器:与高通相反,让图像使高频分量抑制,低频分量通过带通滤波器:使图像在某一部分的频率信息通过,其他过低或过高都抑制还有个带阻滤波器,是带通的反。模板运算与卷积定理在时域内做模板运算,实际上就是对图像进行卷积。模板运算是图像处理一个很重要的处理过程,很多图像处理过程,比如增强/去噪(这两个分不清楚),边缘检测中普遍用到。根据卷积定理,时域卷积等价与频域乘积。因此,在时域内对图像做模板运算就等效于在频域内对图像做滤波处理。比如说一个均值模板,其频域响应为一个低通滤波器;在时域内对图像作均值滤波就等效于在频域内对图像用均值模板的频域响应对图像的频域响应作一个低通滤波。图像去噪图像去噪就是压制图像的噪音部分。因此,如果噪音是高频额,从频域的角度来看,就是需要用一个低通滤波器对图像进行处理。通过低通滤波器可以抑制图像的高频分量。但是这种情况下常常会造成边缘信息的抑制。常见的去噪模板有均值模板,高斯模板等。这两种滤波器都是在局部区域抑制图像的高频分量,模糊图像边缘的同时也抑制了噪声。还有一种非线性滤波-中值滤波器。中值滤波器对脉冲型噪声有很好的去掉。因为脉冲点都是突变的点,排序以后输出中值,那么那些最大点和最小点就可以去掉了。中值滤波对高斯噪音效果较差。椒盐噪声:对于椒盐采用中值滤波可以很好的去除。用均值也可以取得一定的效果,但是会引起边缘的模糊。高斯白噪声:白噪音在整个频域的都有分布,好像比较困难。冈萨雷斯版图像处理P185:算术均值滤波器和几何均值滤波器(尤其是后者)更适合于处理高斯或者均匀的随机噪声。谐波均值滤波器更适合于处理脉冲噪声。图像增强有时候感觉图像增强与图像去噪是一对矛盾的过程,图像增强经常是需要增强图像的边缘,以获得更好的显示效果,这就需要增加图像的高频分量。而图像去噪是为了消除图像的噪音,也就是需要抑制高频分量。有时候这两个又是指类似的事情。比如说,消除噪音的同时图像的显示效果显著的提升了,那么,这时候就是同样的意思了。常见的图像增强方法有对比度拉伸,直方图均衡化,图像锐化等。前面两个是在空域进行基于像素点的变换,后面一个是在频域处理。我理解的锐化就是直接在图像上加上图像高通滤波后的分量,也就是图像的边缘效果。对比度拉伸和直方图均衡化都是为了提高图像的对比度,也就是使图像看起来差异更明显一些,我想,经过这样的处理以后,图像也应该增强了图像的高频分量,使得图像的细节上差异更大。同时也引入了一些噪音。
内容概要:本文是一篇关于使用RandLANet模型对SensatUrban数据集进行点云语义分割的实战教程,系统介绍了从环境搭建、数据准备、模型训练与测试到精度评估的完整流程。文章详细说明了在Ubuntu系统下配置TensorFlow 2.2、CUDA及cuDNN等深度学习环境的方法,并指导用户下载和预处理SensatUrban数据集。随后,逐步讲解RandLANet代码的获取与运行方式,包括训练、测试命令的执行与参数含义,以及如何监控训练过程中的关键指标。最后,教程涵盖测试结果分析、向官方平台提交结果、解读评估报告及可视化效果等内容,并针对常见问题提供解决方案。; 适合人群:具备一定深度学习基础,熟悉Python编程和深度学习框架,从事计算机视觉或三维点云相关研究的学生、研究人员及工程师;适合希望动手实践点云语义分割项目的初学者与进阶者。; 使用场景及目标:①掌握RandLANet网络结构及其在点云语义分割任务中的应用;②学会完整部署一个点云分割项目,包括数据处理、模型训练、测试与性能评估;③为参与相关竞赛或科研项目提供技术支撑。; 阅读建议:建议读者结合提供的代码链接和密码访问完整资料,在本地或云端环境中边操作边学习,重点关注数据格式要求与训练参数设置,遇到问题时参考“常见问题与解决技巧”部分及时排查。
内容概要:本文详细介绍了三相异步电机SVPWM-DTC(空间矢量脉宽调制-直接转矩控制)的Simulink仿真实现方法,结合DTC响应快与SVPWM谐波小的优点,构建高性能电机控制系统。文章系统阐述了控制原理,包括定子磁链观测、转矩与磁链误差滞环比较、扇区判断及电压矢量选择,并通过SVPWM技术生成固定频率PWM信号,提升系统稳态性能。同时提供了完整的Simulink建模流程,涵盖电机本体、磁链观测器、误差比较、矢量选择、SVPWM调制、逆变器驱动等模块的搭建与参数设置,给出了仿真调试要点与预期结果,如电流正弦性、转矩响应快、磁链轨迹趋圆等,并提出了模型优化与扩展方向,如改进观测器、自适应滞环、弱磁控制和转速闭环等。; 适合人群:电气工程、自动化及相关专业本科生、研究生,从事电机控制算法开发的工程师,具备一定MATLAB/Simulink和电机控制理论基础的技术人员。; 使用场景及目标:①掌握SVPWM-DTC控制策略的核心原理与实现方式;②在Simulink中独立完成三相异步电机高性能控制系统的建模与仿真;③通过仿真验证控制算法有效性,为实际工程应用提供设计依据。; 阅读建议:学习过程中应结合文中提供的电机参数和模块配置逐步搭建模型,重点关注磁链观测、矢量选择表和SVPWM调制的实现细节,仿真时注意滞环宽度与开关频率的调试,建议配合MATLAB官方工具箱文档进行参数校准与结果分析。
已经博主授权,源码转载自 https://pan.quark.cn/s/bf1e0d5b9490 本文重点阐述了Vue2.0多Tab切换组件的封装实践,详细说明了通过封装Tab切换组件达成多Tab切换功能,从而满足日常应用需求。 知识点1:Vue2.0多Tab切换组件的封装* 借助封装Tab切换组件,达成多Tab切换功能* 支持tab切换、tab定位、tab自动化仿React多Tab实现知识点2:TabItems组件的应用* 在index.vue文件中应用TabItems组件,借助name属性设定tab的标题* 通过:isContTab属性来设定tab的内容* 能够采用子组件作为tab的内容知识点3:TabItems组件的样式* 借助index.less文件来设定TabItems组件的样式* 设定tab的标题样式、背景色彩、边框样式等* 使用animation达成tab的切换动画知识点4:Vue2.0多Tab切换组件的构建* 借助运用Vue2.0框架,达成多Tab切换组件的封装* 使用Vue2.0的组件化理念,达成TabItems组件的封装* 通过运用Vue2.0的指令和绑定机制,达成tab的切换功能知识点5:Vue2.0多Tab切换组件的优势* 达成多Tab切换功能,满足日常应用需求* 支持tab切换、tab定位、tab自动化仿React多Tab实现* 能够满足多样的业务需求,具备良好的扩展性知识点6:Vue2.0多Tab切换组件的应用场景* 能够应用于多样的业务场景,例如:管理系统、电商平台、社交媒体等* 能够满足不同的业务需求,例如:多Tab切换、数据展示、交互式操作等* 能够与其它Vue2.0组件结合运用,达成复杂的业务逻辑Vue2.0多Tab切换组件的封装实例提供了...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值