The Haar basis

本文介绍了haar小波变换的基础概念,包括haar基函数的定义及其正交性质,并详细阐述了如何利用haar基来表示有限平方积分函数。同时,文中还讨论了从连续函数到离散样本数值处理的过渡方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Haar basis

The Haar wavelet is defined as:

The Haar basis, consisting of the functions

that is rescaled versions of (by ) shifted by .These functions are orthogonal i.e.

Moreover, they form a basis for all functions f with finite squareintegral

This means that we canrepresent such a function as

The coefficients are called theHaar Wavelet coefficients.

In order to facilitate the transition between the functions(continuous) point of view and the discrete (sample) numericalapproach we choose to discretize a function on a given scale bydefining its ``sampled'' values as being averages on that scale, i.e.for a fixed j we define

where

is called a scaling function (thefunction is normalized so that ).The number is the average of f on the interval.

We observe that , fromwhich we deduce the recursive algorithm for computing the Haar coefficients infigure A.15.

  
Figure A.15: Recursive algorithm for the Haar coefficients

Interpretation: represent the time average of the signal fon time intervals of length , represent the variation of the average time signal on two consecutiveintervals.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值