viridis [ˈvɪrɪˌdɪs] n.翠绿色;
该包提供了一系列 色盲友好的颜色。
Robust to colorblindness, so that the above properties hold true for people with common forms of colorblindness, as well as in grey scale printing, and
Pretty, oh so pretty
install.packages("viridis")
1.生成颜色实例: 参数类似
library(viridis)
#c1=viridis(n=10, alpha = 1, begin = 0, end = 1, direction = 1); c1
c1=viridis(10, alpha = 1, begin = 0, end = 1, direction = 1, option = "A"); c1
# n 色彩个数
# alpha 不透明度,1表示完全不透明,0表示完全透明。
# begin 和 end 表示 hue 开始和结束的位置[0,1]
# direction 颜色方向,1从深到浅,-1反之。
# option 表示8种颜色方案,可以换前面的函数名,也可以换 option 种的字母A-H
barplot( rep(1, length(c1)), col=c1,
border=NA, yaxt='n', space=0, main="")

2.官方教程
library(ggplot2)
ggplot(data.frame(x = rnorm(10000), y = rnorm(10000)), aes(x = x, y = y)) +
geom_hex() + coord_fixed() +
scale_fill_viridis() + theme_bw()

3.查看8种颜色方案
draw=function(colorname, title="", n=100){
if(title==""){
title=paste0(colorname, ", n=", n)
}
#print(title)
cols=do.call(colorname, list(n, alpha = 1, begin = 0, end = 1, direction = -1) )
barplot( rep(1, length(cols)), col=cols,
border=NA, yaxt='n', space=0, main=title)
}
par(mfrow=c(8,2), mar=c(0,0,1.5,0) )
for(i in c("viridis", "magma", "inferno", "plasma",
"cividis", "rocket", "mako", "turbo")){
print(i)
draw(i, n=10)
draw(i, n=100)
}

4.热图
前7种渐变色都特别适合热图。
set.seed(2022)
test = matrix(rnorm(200), 20, 10)
test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3
test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2
test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4
colnames(test) = paste("Test", 1:10, sep = "")
rownames(test) = paste("Gene", 1:20, sep = "")
#
dim(test)
# Draw heatmaps
library(pheatmap)
pheatmap(test)

# viridis
pheatmap(test, color = viridis(8), main="viridis")

# mako
pheatmap(test, color = viridis(8, option = "G"), main="mako")

ref
- https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
== End ==

本文介绍了R语言中的viridis包,它提供了多种色盲友好的颜色方案,适用于图表和热图的色彩填充。通过示例展示了如何生成不同颜色实例、使用在barplot和ggplot2中,以及查看8种预设颜色方案。此外,还演示了使用viridis和mako颜色方案创建热图的方法。
1394

被折叠的 条评论
为什么被折叠?



