Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.
You have the following three operations permitted on a word:
Insert a character
Delete a character
Replace a character
Example 1:
Input: word1 = “horse”, word2 = “ros”
Output: 3
Explanation:
horse -> rorse (replace ‘h’ with ‘r’)
rorse -> rose (remove ‘r’)
rose -> ros (remove ‘e’)
Example 2:
Input: word1 = “intention”, word2 = “execution”
Output: 5
Explanation:
intention -> inention (remove ‘t’)
inention -> enention (replace ‘i’ with ‘e’)
enention -> exention (replace ‘n’ with ‘x’)
exention -> exection (replace ‘n’ with ‘c’)
exection -> execution (insert ‘u’)
Constraints:
- 0 <= word1.length, word2.length <= 500
- word1 and word2 consist of lowercase English letters.
对于 word1[i]和 word2[j], 我们能做的操作就是题目里给的那三种:
- 插入,在 word1[i]处插入 word2[j], 此时 j += 1, 而 i 不变, 操作计数+1
- 删除, 把 word1[i]删除, 此时 i += 1, 而 j 不变, 操作计数+1
- 替换, 把 word1[i]替换成 word2[j], 此时 i += 1, j += 1, 操作计数视 word1[i]和 word2[j]而定, 如果 word1[i] == word2[j], 则说明实际不用替换, 操作计数不变, 否则操作计数+1
最终, 如果 i 先到达 word1 尾部, 则证明我们需要往 word1 尾部插入 word2 的剩余字符, 如果 j 先到达 word2 的尾部, 则证明我们需要删除 word1 的剩余字符
use std::collections::HashMap;
impl Solution {
fn dp(chars1: &Vec<char>, chars2: &Vec<char>, i: usize, j: usize, cache: &mut HashMap<(usize, usize), i32>) -> i32 {
if j == chars2.len() {
return (chars1.len() - i) as i32;
}
if i == chars1.len() {
return (chars2.len() - j) as i32;
}
if let Some(c) = cache.get(&(i, j)) {
return *c;
}
let insert = Solution::dp(chars1, chars2, i, j + 1, cache) + 1;
let delete = Solution::dp(chars1, chars2, i + 1, j, cache) + 1;
let replace = Solution::dp(chars1, chars2, i + 1, j + 1, cache) + if chars1[i] == chars2[j] { 0 } else { 1 };
let ans = insert.min(delete).min(replace);
cache.insert((i, j), ans);
ans
}
pub fn min_distance(word1: String, word2: String) -> i32 {
Solution::dp(&word1.chars().collect(), &word2.chars().collect(), 0, 0, &mut HashMap::new())
}
}