Given an m x n matrix, return a new matrix answer where answer[row][col] is the rank of matrix[row][col].
The rank is an integer that represents how large an element is compared to other elements. It is calculated using the following rules:
The rank is an integer starting from 1.
If two elements p and q are in the same row or column, then:
If p < q then rank§ < rank(q)
If p == q then rank§ == rank(q)
If p > q then rank§ > rank(q)
The rank should be as small as possible.
The test cases are generated so that answer is unique under the given rules.
Example 1:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GZDeCS8y-1677080795564)(null)]
Input: matrix = [[1,2],[3,4]]
Output: [[1,2],[2,3]]
Explanation:
The rank of matrix[0][0] is 1 because it is the smallest integer in its row and column.
The rank of matrix[0][1] is 2 because matrix[0][1] > matrix[0][0] and matrix[0][0] is rank 1.
The rank of matrix[1][0] is 2 because matrix[1][0] > matrix[0][0] and matrix[0][0] is rank 1.
The rank of matrix[1][1] is 3 because matrix[1][1] > matrix[0][1], matrix[1][1] > matrix[1][0], and both matrix[0][1] and matrix[1][0] are rank 2.
Example 2:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CdFe2Wnr-1677080797518)(null)]
Input: matrix = [[7,7],[7,7]]
Output: [[1,1],[1,1]]
Example 3:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JORDYrOV-1677080795386)(null)]
Input: matrix = [[20,-21,14],[-19,4,19],[22,-47,24],[-19,4,19]]
Output: [[4,2,3],[1,3,4],[5,1,6],[1,3,4]]
Constraints:
- m == matrix.length
- n == matrix[i].length
- 1 <= m, n <= 500
- -109 <= matrix[row][col] <= 109
将 value 相同的 cells 收集到一起并排序, 然后遍历该数组,我们就可以从小到大的处理这些 cells, 维护每行和每列的最大值, 因为是从小到大的进行处理, 所以我们只需要找 cell 所在行和所在列当前的最大值即可, 最大值+1 就是该 cell 的 rank, 但是如果相同行或者相同列上有 value 相同的 cells, 这些同行或者同列的 cells 实际是相互联通的, 我们要将它们视作一个整体来查找这些 cells 所在行和列的最大值, 这里我们用 union-find 的方法来将这些 value 相同的 cells 分成独立的 components, 然后每个 component 查找一个最大值赋给 component 中的 cells
use std::collections::HashMap;
impl Solution {
fn find(parents: &mut Vec<usize>, i: usize) -> usize {
if parents[i] == i {
return i;
}
let p = Solution::find(parents, parents[i]);
parents[i] = p;
return p;
}
pub fn matrix_rank_transform(matrix: Vec<Vec<i32>>) -> Vec<Vec<i32>> {
let positions: HashMap<i32, Vec<(usize, usize)>> =
matrix
.iter()
.enumerate()
.fold(HashMap::new(), |mut m, (r, l)| {
l.into_iter().enumerate().for_each(|(c, &v)| {
m.entry(v).or_insert(Vec::new()).push((r, c));
});
m
});
let mut positions: Vec<(i32, Vec<(usize, usize)>)> =
positions.into_iter().map(|(k, v)| (k, v)).collect();
positions.sort();
let mut row_maxes = vec![0; matrix.len()];
let mut col_maxes = vec![0; matrix[0].len()];
let mut ans = vec![vec![0; matrix[0].len()]; matrix.len()];
for (_, ps) in positions {
let mut same_rows = HashMap::new();
let mut same_cols = HashMap::new();
let mut parents: Vec<usize> = Vec::new();
for i in 0..ps.len() {
same_rows.entry(ps[i].0).or_insert(Vec::new()).push(i);
same_cols.entry(ps[i].1).or_insert(Vec::new()).push(i);
parents.push(i);
}
for i in 0..ps.len() {
for &ri in same_rows.get(&ps[i].0).unwrap() {
if ri >= i {
continue;
}
let p = Solution::find(&mut parents, ri);
parents[p] = i;
}
for &ci in same_cols.get(&ps[i].1).unwrap() {
if ci >= i {
continue;
}
let p = Solution::find(&mut parents, ci);
parents[p] = i;
}
}
let mut m = HashMap::new();
for i in 0..ps.len() {
let p = Solution::find(&mut parents, i);
m.entry(p).or_insert(Vec::new()).push(ps[i]);
}
for group in m.values() {
let mut max = 0;
for &(r, c) in group {
max = max.max(row_maxes[r]);
max = max.max(col_maxes[c]);
}
for &(r, c) in group {
row_maxes[r] = max + 1;
col_maxes[c] = max + 1;
ans[r][c] = max + 1;
}
}
}
ans
}
}

给定一个矩阵,返回一个新矩阵,其中新矩阵的每个元素是其原始位置元素的排名。排名根据特定规则计算:同一行或列中,较小的元素排名更低。通过比较元素并维护行和列的最大值来确定排名。
1250

被折叠的 条评论
为什么被折叠?



