LeetCode每日一题(2447. Number of Subarrays With GCD Equal to K)

Given an integer array nums and an integer k, return the number of subarrays of nums where the greatest common divisor of the subarray’s elements is k.

A subarray is a contiguous non-empty sequence of elements within an array.

The greatest common divisor of an array is the largest integer that evenly divides all the array elements.

Example 1:

Input: nums = [9,3,1,2,6,3], k = 3
Output: 4

Explanation: The subarrays of nums where 3 is the greatest common divisor of all the subarray’s elements are:

  • [9,3,1,2,6,3]
  • [9,3,1,2,6,3]
  • [9,3,1,2,6,3]
  • [9,3,1,2,6,3]

Example 2:

Input: nums = [4], k = 7
Output: 0

Explanation: There are no subarrays of nums where 7 is the greatest common divisor of all the subarray’s elements.

Constraints:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i], k <= 109

欧几里得最大公约数计算方法 + 去重优化


use std::collections::{BinaryHeap, HashSet};

impl Solution {
    fn calc_gcd(nums: &HashSet<i32>) -> i32 {
        let mut heap = BinaryHeap::new();
        let mut min = i32::MAX;
        for &n in nums {
            if n == 1 {
                return 1;
            }
            min = min.min(n);
            heap.push(n);
        }
        while let Some(n) = heap.pop() {
            let r = n % min;
            if r == 0 {
                continue;
            }
            min = min.min(r);
            heap.push(r);
        }
        min
    }

    pub fn subarray_gcd(nums: Vec<i32>, k: i32) -> i32 {
        let mut ans = 0;
        for i in 0..nums.len() {
            if nums[i] % k != 0 {
                continue;
            }
            let mut set = HashSet::new();
            set.insert(nums[i]);
            for j in i..nums.len() {
                set.insert(nums[j]);
                if Solution::calc_gcd(&set) == k {
                    ans += 1;
                }
            }
        }
        ans
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值