Given an integer array arr and a target value target, return the integer value such that when we change all the integers larger than value in the given array to be equal to value, the sum of the array gets as close as possible (in absolute difference) to target.
In case of a tie, return the minimum such integer.
Notice that the answer is not neccesarilly a number from arr.
Example 1:
Input: arr = [4,9,3], target = 10
Output: 3
Explanation: When using 3 arr converts to [3, 3, 3] which sums 9 and that’s the optimal answer.
Example 2:
Input: arr = [2,3,5], target = 10
Output: 5
Example 3:
Input: arr = [60864,25176,27249,21296,20204], target = 56803
Output: 11361
Constraints:
- 1 <= arr.length <= 104
- 1 <= arr[i], target <= 105
太难表达了, 不写了, 看代码吧
impl Solution {
pub fn find_best_value(mut arr: Vec<i32>, target: i32) -> i32 {
arr.sort();
let ori = arr.clone();
let mut total = arr.len() as i32;
let arr = arr.into_iter().fold(Vec::new(), |mut l, v| {
if let Some((last_val, mut last_count)) = l.pop() {
if last_val == v {
last_count += 1;
l.push((last_val, last_count));
return l;
}
l.push((last_val, last_count));
}
l.push((v, 1));
return l;
});
let mut sum = 0;
let mut diffs = Vec::new();
let mut prev = i32::MIN;
for (v, c) in arr {
if target < sum {
break;
}
let d = (target - sum) / total;
if d <= v && d > prev {
diffs.push((((sum + d * total) - target).abs(), d));
}
if d + 1 <= v && d + 1 > prev {
diffs.push((((sum + (d + 1) * total) - target).abs(), d + 1));
}
sum += v * c;
total -= c;
prev = v;
}
if diffs.is_empty() {
return *ori.last().unwrap();
}
diffs.sort();
diffs[0].1
}
}

该博客讨论了一个算法问题,即如何找到一个整数,当将数组中大于该数的所有元素替换为该数时,使数组的和尽可能接近给定的目标值。博主提供了一个解决方案,通过排序和迭代数组,计算不同替换值对总和的影响,以找到最佳值。示例展示了算法在不同输入情况下的应用。
1278

被折叠的 条评论
为什么被折叠?



