You are given a 0-indexed integer array nums and an integer k.
You are initially standing at index 0. In one move, you can jump at most k steps forward without going outside the boundaries of the array. That is, you can jump from index i to any index in the range [i + 1, min(n - 1, i + k)] inclusive.
You want to reach the last index of the array (index n - 1). Your score is the sum of all nums[j] for each index j you visited in the array.
Return the maximum score you can get.
Example 1:
Input: nums = [1,-1,-2,4,-7,3], k = 2
Output: 7
Explanation: You can choose your jumps forming the subsequence [1,-1,4,3] (underlined above). The sum is 7.
Example 2:
Input: nums = [10,-5,-2,4,0,3], k = 3
Output: 17
Explanation: You can choose your jumps forming the subsequence [10,4,3] (underlined above). The sum is 17.
Example 3:
Input: nums = [1,-5,-20,4,-1,3,-6,-3], k = 2
Output: 0
Constraints:
- 1 <= nums.length, k <= 105
- -104 <= nums[i] <= 104
盯着答案看了半天, 终于有些理解了。
维持一个队列 queue, 队列里保存所有走过的 index, 并且保证这个队列里的 index 对应到 nums 里的值是单向递减的, 也就是 nums[queue[0]]一定是最大的, 这样反向遍历整个数组, 对应每一个 i, 最优结果应该是 nums[i] + nums[queue[0]], 然后把当前的结果放到 queue 里, 同时剔除 queue 中所有小于当前结果的结果。最后清理 queue 中已经超出范围的结果
impl Solution {
pub fn max_result(mut nums: Vec<i32>, k: i32) -> i32 {
let mut stack = Vec::new();
let mut curr = 0;
for (i, n) in nums.clone().into_iter().enumerate().rev() {
curr = n + if stack.is_empty() { 0 } else { nums[stack[0]] };
while let Some(j) = stack.pop() {
if curr < nums[j] {
stack.push(j);
break;
}
}
stack.push(i);
while !stack.is_empty() {
if stack[0] >= i + k as usize {
stack.remove(0);
continue;
}
break;
}
nums[i] = curr;
}
curr
}
}

在给定的整数数组nums和步长k中,从索引0开始,每次最多向前跳k步。目标是到达数组的最后一个索引,并最大化途中访问的数字之和。使用队列优化策略,保持队列中存储的已访问索引的nums值单调递减,以找到最优解。
738

被折叠的 条评论
为什么被折叠?



