DataStream API是Flink的核心层API。一个Flink程序,其实就是对DataStream的各种转换。具体来说,代码基本上都由以下几部分构成:

一、执行环境(Execution Environment)
Flink程序可以在各种上下文环境中运行:我们可以在本地JVM中执行程序,也可以提交到远程集群上运行。不同的环境,代码的提交运行的过程会有所不同。这就要求我们在提交作业执行计算时,首先必须获取当前Flink的运行环境,从而建立起与Flink框架之间的联系。
1.1 创建执行环境
我们要获取的执行环境,是StreamExecutionEnvironment类的对象,这是所有Flink程序的基础。在代码中创建执行环境的方式,就是调用这个类的静态方法,具体有以下三种。
1)getExecutionEnvironment
最简单的方式,就是直接调用getExecutionEnvironment方法。它会根据当前运行的上下文直接得到正确的结果:如果程序是独立运行的,就返回一个本地执行环境;如果是创建了jar包,然后从命令行调用它并提交到集群执行,那么就返回集群的执行环境。也就是说,这个方法会根据当前运行的方式,自行决定该返回什么样的运行环境。
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
这种方式,用起来简单高效,是最常用的一种创建执行环境的方式。
2)createLocalEnvironment
这个方法返回一个本地执行环境。可以在调用时传入一个参数,指定默认的并行度;如果不传入,则默认并行度就是本地的CPU核心数。
StreamExecutionEnvironment localEnv = StreamExecutionEnvironment.createLocalEnvironment();
3)createRemoteEnvironment
这个方法返回集群执行环境。需要在调用时指定JobManager的主机名和端口号,并指定要在集群中运行的Jar包。
StreamExecutionEnvironment remoteEnv = StreamExecutionEnvironment
.createRemoteEnvironment(
"host", // JobManager主机名
1234, // JobManager进程端口号
"path/to/jarFile.jar" // 提交给JobManager的JAR包
);
在获取到程序执行环境后,我们还可以对执行环境进行灵活的设置。比如可以全局设置程序的并行度、禁用算子链,还可以定义程序的时间语义、配置容错机制。
1.2 执行模式(Execution Mode)
从Flink 1.12开始,官方推荐的做法是直接使用DataStream API,在提交任务时通过将执行模式设为BATCH来进行批处理。不建议使用DataSet API。
// 流处理环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream API执行模式包括:流执行模式、批执行模式和自动模式。
(1) 流执行模式(Streaming)
这是DataStream API最经典的模式,一般用于需要持续实时处理的无界数据流。默认情况下,程序使用的就是Streaming执行模式。
env.setRuntimeMode(RuntimeExecutionMode.STREAMING);
(2) 批执行模式(Batch)
专门用于批处理的执行模式。
env.setRuntimeMode(RuntimeExecutionMode.BATCH);
(3) 自动模式(AutoMatic)
在这种模式下,将由程序根据输入数据源是否有界,来自动选择执行模式。
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
批执行模式的使用。主要有两种方式:
(1)通过命令行配置
bin/flink run -Dexecution.runtime-mode=BATCH ...
在提交作业时,增加execution.runtime-mode参数,指定值为BATCH。
(2)通过代码配置
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.BATCH);
在代码中,直接基于执行环境调用setRuntimeMode方法,传入BATCH模式。
实际应用中一般不会在代码中配置,而是使用命令行,这样更加灵活。
1.3 触发程序执行
需要注意的是,写完输出(sink)操作并不代表程序已经结束。因为当main()方法被调用时,其实只是定义了作业的每个执行操作,然后添加到数据流图中;这时并没有真正处理数据——因为数据可能还没来。Flink是由事件驱动的,只有等到数据到来,才会触发真正的计算,这也被称为“延迟执行”或“懒执行”。
所以我们需要显式地调用执行环境的execute()方法,来触发程序执行。execute()方法将一直等待作业完成,然后返回一个执行结果(JobExecutionResult)。
env.execute();
二、源算子(Source)
Flink可以从各种来源获取数据,然后构建DataStream进行转换处理。一般将数据的输入来源称为数据源(data source),而读取数据的算子就是源算子(source operator)。所以,source就是我们整个处理程序的输入端。

在Flink1.12以前,旧的添加source的方式,是调用执行环境的addSource()方法:
DataStream<String> stream = env.addSource(...);
方法传入的参数是一个“源函数”(source function),需要实现SourceFunction接口。
从Flink1.12开始,主要使用流批统一的新Source架构:
DataStreamSource<String> stream = env.fromSource(…)
Flink直接提供了很多预实现的接口,此外还有很多外部连接工具也帮我们实现了对应的Source,通常情况下足以应对我们的实际需求。
2.1 准备工作
2.2 从集合中读取数据
2.3 从文件读取数据
2.4 从Socket读取数据
2.5 从Kafka读取数据
2.6 从数据生成器读取数据
2.7 Flink支持的数据类型
三、转换算子(Transformation)
3.1 基本转换算子(map/ filter/ flatMap)
3.1.1映射(map)
map是大家非常熟悉的大数据操作算子,主要用于将数据流中的数据进行转换,形成新的数据流。简单来说,就是一个“一一映射”,消费一个元素就产出一个元素。

我们只需要基于DataStream调用map()方法就可以进行转换处理。方法需要传入的参数是接口MapFunction的实现;返回值类型还是DataStream,不过泛型(流中的元素类型)可能改变。
下面的代码用不同的方式,实现了提取WaterSensor中的id字段的功能。
public class MapFunctionImpl implements MapFunction<WaterSensor,String> {
@Override
public String map(WaterSensor value) throws Exception {
return value.getId();
}
}
public class MapDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DataStreamSource<WaterSensor> sensorDS = env.fromElements(
new WaterSensor("s1", 1L, 1),
new WaterSensor("s2", 2L, 2),
new WaterSensor("s3", 3L, 3)
);
// TODO map算子: 一进一出
// TODO 方式一: 匿名实现类
// SingleOutputStreamOperator<String> map = sensorDS.map(new MapFunction<WaterSensor, String>() {
// @Override
// public String map(WaterSensor value) throws Exception {
// return value.getId();
// }
// });
// TODO 方式二: lambda表达式
// SingleOutputStreamOperator<String> map = sensorDS.map(sensor -> sensor.getId());
// TODO 方式三: 定义一个类来实现MapFunction
// SingleOutputStreamOperator<String> map = sensorDS.map(new MyMapFunction());
SingleOutputStreamOperator<String> map = sensorDS.map(new MapFunctionImpl());
map.print();
env.execute();
}
public static class MyMapFunction implements MapFunction<WaterSensor,String>{
@Override
public String map(WaterSensor value) throws Exception {
return value.getId();
}
}
}
上面代码中,MapFunction实现类的泛型类型,与输入数据类型和输出数据的类型有关。在实现MapFunction接口的时候,需要指定两个泛型,分别是输入事件和输出事件的类型,还需要重写一个map()方法,定义从一个输入事件转换为另一个输出事件的具体逻辑。
运行结果:

3.1.2 过滤(filter)
filter转换操作,顾名思义是对数据流执行一个过滤,通过一个布尔条件表达式设置过滤条件,对于每一个流内元素进行判断,若为true则元素正常输出,若为false则元素被过滤掉。

进行filter转换之后的新数据流的数据类型与原数据流是相同的。filter转换需要传入的参数需要实现FilterFunction接口,而FilterFunction内要实现filter()方法,就相当于一个返回布尔类型的条件表达式。
案例需求:下面的代码会将数据流中传感器id为sensor_1的数据过滤出来。
public class FilterFunctionImpl implements FilterFunction<WaterSensor> {
public String id;
public FilterFunctionImpl(String id) {
this.id = id;
}
@Override
public boolean filter(WaterSensor value) throws Exception {
return this.id.equals(value.getId());
}
}
public class FilterDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DataStreamSource<WaterSensor> sensorDS = env.fromElements(
new WaterSensor("s1", 1L, 1),
new WaterSensor("s1", 11L, 11),
new WaterSensor("s2", 2L, 2),
new WaterSensor("s3", 3L, 3)
);
// TODO filter: true保留,false过滤掉
// SingleOutputStreamOperator<WaterSensor> filter = sensorDS.filter(new FilterFunction<WaterSensor>() {
// @Override
// public boolean filter(WaterSensor value) throws Exception {
// return "s1".equals(value.getId());
// }
// });
SingleOutputStreamOperator<WaterSensor> filter = sensorDS.filter(new FilterFunctionImpl("s1"));
filter.print();
env.execute();
}
}
运行结果:

3.1.3 扁平映射(flatMap)
flatMap操作又称为扁平映射,主要是将数据流中的整体(一般是集合类型)拆分成一个一个的个体使用。消费一个元素,可以产生0到多个元素。flatMap可以认为是“扁平化”(flatten)和“映射”(map)两步操作的结合,也就是先按照某种规则对数据进行打散拆分,再对拆分后的元素做转换处理。

同map一样,flatMap也可以使用Lambda表达式或者FlatMapFunction接口实现类的方式来进行传参,返回值类型取决于所传参数的具体逻辑,可以与原数据流相同,也可以不同。
案例需求:如果输入的数据是sensor_1,只打印vc;如果输入的数据是sensor_2,既打印ts又打印vc。
public class FlatmapDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DataStreamSource<WaterSensor> sensorDS = env.fromElements(
new WaterSensor("s1", 1L, 1),
new WaterSensor("s1", 11L, 11),
new WaterSensor("s2", 2L, 2),
new WaterSensor("s3", 3L, 3)
);
/**
* TODO flatmap: 一进多出(包含0出)
* 对于s1的数据,一进一出
* 对于s2的数据,一进2出
* 对于s3的数据,一进0出(类似于过滤的效果)
*
* map怎么控制一进一出:
* =》 使用 return
*
* flatmap怎么控制的一进多出
* =》 通过 Collector来输出, 调用几次就输出几条
*
*
*/
SingleOutputStreamOperator<String> flatmap = sensorDS.flatMap(new FlatMapFunction<WaterSensor, String>() {
@Override
public void flatMap(WaterSensor value, Collector<String> out) throws Exception {
if ("s1".equals(value.getId())) {
// 如果是 s1,输出 vc
out.collect(value.getVc().toString());
} else if ("s2".equals(value.getId())) {
// 如果是 s2,分别输出ts和vc
out.collect(value.getTs().toString());
out.collect(value.getVc().toString());
}
}
});
flatmap.print();
env.execute();
}
}
运行结果:

3.2 聚合算子(Aggregation)
计算的结果不仅依赖当前数据,还跟之前的数据有关,相当于要把所有数据聚在一起进行汇总合并——这就是所谓的“聚合”(Aggregation),类似于MapReduce中的reduce操作。
3.2.1 按键分区(keyBy)
对于Flink而言,DataStream是没有直接进行聚合的API的。因为我们对海量数据做聚合肯定要进行分区并行处理,这样才能提高效率。所

最低0.47元/天 解锁文章
364

被折叠的 条评论
为什么被折叠?



