Python中的yield

本文转自http://lukejin.javaeye.com/blog/587051

前段时间在读trac wiki模块的源码的时候,发现了很 多地方都使用了yiled这一关键词,

感觉是在需要返回某个值的地方通过yield来代替return

不是很明白其用法,所以仔细研究下。

 

一个使用了yiled 键字的函数就不再是一个普通的函数了,而是一个生成器函数(generator function)

当函数被调用的时候将返回一个迭代器(iterator)

 

所以下面将分别讲解迭代器和生成器这两个概念。

 

. 迭代器(Iterator)

 

迭代器是一个对象,它实现了迭代器协议,

一般需要实现如下两个方法

1next方法

回容器的下一个元素

2__iter__方法

返回迭代器自身

 

 

对于for语言大家可能都不陌生,我们很多时候需要对一些容器对象进行遍历就会使用到for循环:

 

Python代码

1.      l=[0,1,2,3,4,5,6] 

2.      for i in l: 

3.          print i 

 

l是一个typelist的对象,这段for-in代码在运行的时候其实是调用了l__iter__()函数,返回了一个实现了 __next__()next()(各个版本的python可能不一样,我试验的时候所使用的版本为2.6.2)的迭代器对象,每循环一次就会通过next取下一个元素。

 

当然我们完全没有必要先把所有的元素都算出来放到一个list里或者其他容器类里进行循环,这样比较浪费空间。

我们可以直接创建自己的一个迭代器。

 

Python代码

1.      # -*- coding: utf-8 -*- 

2.       

3.      '''''Fibonacci iterator''' 

4.       

5.      class Fib: 

6.          '''''一个可以生成Fibonacci 数列的迭代器 ''' 

7.       

8.          def __init__(self, max): 

9.              self.max = max 

10.    

11.       def __iter__(self): 

12.           self.a = 0 

13.           self.b = 1 

14.           return self 

15.    

16.       def next(self): 

17.           fib = self.a 

18.           if fib > self.max: 

19.               raise StopIteration 

20.           self.a, self.b = self.b, self.a + self.b 

21.           return fib 

 

 

定义好了这个Fibonacci迭代器,我们就可以来使用它了。

 

 

Python代码

1.      from fibonacci2 import Fib 

2.      for n in Fib(1000): 

3.          print n 

 

当调用Fib(1000)的时候,将生成一个迭代器对象,每一次循环都将调用一

next取到下一个值。

所以我们可以看出迭代器有一个很核心的东西就是在循环中,迭代器可以记住之前的状态。

 

 

.生成器

 

前面我们说了,任何使用了yield关键字的函数都不再是普通的函数了,我们还是来看实例吧,这样比较容易理解

 

 

Python代码

1.      def fib(max): 

2.          a, b = 0, 1           

3.          while a < max: 

4.              yield a           

5.              a, b = b, a + b   

这里简单的几行代码就实现了上面的迭代器类那么一大堆代码所实现的功能

 

使用的时候和上面很类似:

 

 

Python代码

1.      from fibonacci import fib 

2.      for n in fib(1000): 

3.          print n 

 

引文fib函数使用了yield所以它是一个生成器函数,当我们调用fib(1000)的时候它其实是返回了一个迭代器,且这个迭代器可以控制生成器函数的运行。

我们通过这个返回的迭代器的动作控制fib这个生成器 函数的运行。

每当调用一次迭代器的next函数,生成器函数运行到yield之处,返回yield后面的值且在这个地方暂停,所有的状态都会被保持住,直到下次 next函数被调用,或者碰到异常循环退出。

 

所以生成器的概念还是很简单的。

 

.总结

 

1.for-in语句在底层都是对一个迭代器对象进行操作的

2.使用了yield关键字的函数就是一个生成器函数,被调用的时候生成一个可以控制自己运行的迭代器。

 

<think>嗯,用户想了解Pythonyield的用法和生成器的相关知识。首先,我需要回顾一下生成器的基本概念。生成器是一种特殊的迭代器,可以通过函数来创建,而yield关键字就是用来定义生成器的关键。用户可能已经知道普通的函数使用return返回值,但yield的不同之处在于它会暂停函数执行并保留状态,下次调用时继续执行。 接下来,我需要解释yield的工作流程。例如,当函数执行到yield语句时,会返回一个值,但不会退出函数,而是保持当前状态。下次调用next()时,函数从yield之后继续执行。这点可能需要用例子来说明,比如斐波那契数列的生成器,这样用户能更直观地理解。 然后,生成器的优势是什么?内存效率高,因为不需要一次性生成所有数据,而是按需生成。这在处理大数据时特别有用。比如,当用户需要处理一个很大的文件或者数据集时,生成器可以逐个产生数据,而不是全部加载到内存中。这可以引用用户提供的引用内容中的例子,比如sum(firstn(1000000)),说明生成器如何提升性能。 另外,用户可能想知道生成器的应用场景。比如流式处理、惰性计算、协程等。这些场景需要展开说明,让用户了解实际使用中的情况。比如,使用生成器处理日志文件,逐行读取处理,而不是一次性读入内存。 用户提供的引用中有提到生成器和迭代器的区别,可能需要对比说明。生成器是迭代器的一种,但更简洁,不需要实现__iter__和__next__方法,只需使用yield即可。引用中的斐波那契例子可以再次使用,展示生成器的简洁性。 还要注意yield的常见误区,比如函数中使用yield后,函数就变成了生成器函数,调用时返回生成器对象,而不是直接执行。这点需要强调,避免用户误解。同时,生成器只能遍历一次,之后需要重新创建,这也是需要注意的地方。 用户的问题可能涉及如何创建生成器,除了函数中使用yield,还可以用生成器表达式。比如(i for i in range(10)),和列表推导式类似,但使用圆括号。这点可能需要补充说明,以全面回答用户的问题。 最后,结合用户提供的引用内容,引用相关的部分来支持解释,比如引用[3]提到的yield类似return,但函数不会释放状态,这点需要强调。同时,引用[2]中的例子可以说明生成器在性能上的优势,比如处理大量数据时节省内存。 总结来说,回答的结构应该包括:生成器的定义、yield的工作机制、生成器的优势、应用场景、与迭代器的对比、创建方式以及注意事项。通过例子和引用中的内容来增强解释的可信度,并确保语言通俗易懂,帮助用户逐步理解。</think>### Python yield 用法及生成器详解 #### 一、生成器的核心概念 生成器是一种特殊的迭代器,通过函数中的`yield`关键字实现。与普通函数使用`return`不同,`yield`会**暂停函数执行并保留当前状态**,下次调用时从暂停处继续执行[^3]。 #### 二、yield 的工作机制 1. **执行流程** - 当函数执行到`yield`时,返回右侧表达式的值 - 函数状态(变量值、执行位置)被冻结 - 下次调用`next()`时,从`yield`下一行继续执行 ```python def count_down(n): while n > 0: yield n n -= 1 gen = count_down(3) print(next(gen)) # 输出 3 print(next(gen)) # 输出 2 ``` 2. **状态保持特性** 生成器函数中的局部变量在多次调用中会保持状态,而普通函数每次调用都会重新初始化变量[^3]。 #### 三、生成器的核心优势 1. **内存效率** 按需生成数据,避免一次性加载所有数据到内存。例如处理百万级数据: ```python def large_dataset(): for i in range(1_000_000): yield i * 2 ``` 此生成器仅需几十字节内存,而列表需要约8MB[^2]。 2. **惰性计算特性** 数据只有在被请求时才会生成,适合处理: - 无限序列(如斐波那契数列) - 流式数据(如日志文件实时处理) - 大数据集分块处理 #### 四、典型应用场景 1. **高效迭代器实现** ```python def fibonacci(): a, b = 0, 1 while True: yield a a, b = b, a + b fib = fibonacci() print([next(fib) for _ in range(10)]) # 输出前10项 ``` 2. **协程实现基础** `yield`可实现双向通信,是协程编程的基础: ```python def coroutine(): while True: received = yield print(f"Received: {received}") c = coroutine() next(c) # 启动协程 c.send("Hello") # 输出 Received: Hello ``` #### 五、生成器进阶用法 1. **表达式形式** 使用圆括号创建生成器表达式: ```python squares = (x*x for x in range(10)) sum(squares) # 返回 285 ``` 2. **数据管道构建** 多生成器串联实现复杂处理流程: ```python def read_lines(file): with open(file) as f: for line in f: yield line.strip() def filter_comments(lines): for line in lines: if not line.startswith('#'): yield line pipeline = filter_comments(read_lines('config.ini')) ``` #### 六、注意事项 1. **一次性特性** 生成器遍历完成后需要重新创建: ```python gen = (x for x in range(3)) list(gen) # [0,1,2] list(gen) # [] ``` 2. **异常处理** 使用`generator.close()`或`generator.throw()`管理生成器生命周期。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值