apue(5)

本文详细介绍了进程终止的各种方式,包括从主函数返回、显式调用exit或_Exi等函数,以及通过信号或异常来终止进程。此外,还探讨了C程序的内存布局、环境变量的管理和动态内存分配函数如malloc、calloc等的使用。
 

7.3. Process Termination

Return from main

Calling exit

Calling _exit or _Exit

//Return of the last thread from its start routine (Section 11.5)

//Calling pthread_exit (Section 11.5) from the last thread


Calling abort (Section 10.17)

Receipt of a signal (Section 10.2)

//Response of the last thread to a cancellation request

Exit Functions
#include <stdlib.h> void exit(int status); //performs certain cleanup processing and then returns to the kernel. void _Exit(int status); //return to the kernel immediately #include <unistd.h> void _exit(int status); //return to the kernel immediately iso1999 默认exit0= return 0 gcc 加上-std=c99 才符合99标准 #include <stdlib.h> int atexit(void (*func)(void)); 注册顺序与执行顺序相反 linuxmain没有exit0),会以最后函数的返回值返回。

7.5. Environment List

 extern char **environ; 字符串数组和字符串都以0结束。

7.6. Memory Layout of a C Program

Text segment, the machine instructions that the CPU executes. //text Initialized data segment //data Uninitialized data segment //初始化全局数组之类 bss Stack Heap The only portions of the program that need to be saved in the program file are the text segment and the initialized data.
只有textdata在程序文件中分配,其余在运行时分配。bss在运行时初始化。但文件大小一般不等与text+data,有一些symbol table information that can be helpful in debugging a core file.

7.7. Shared Libraries

默认gcc使用shared libraries。阻止它使用的方法是 -static

7.8. Memory Allocation

malloc, which allocates a specified number of bytes of memory. The initial value of the memory is indeterminate.

calloc, which allocates space for a specified number of objects of a specified size. The space is initialized to all 0 bits.

realloc, which increases or decreases the size of a previously allocated area. When the size increases, it may involve moving the previously allocated area somewhere else, to provide the additional room at the end. Also, when the size increases, the initial value of the space between the old contents and the end of the new area is indeterminate.

#include <stdlib.h> void *malloc(size_t size); void *calloc(size_t nobj, size_t size); void *realloc(void *ptr, size_t newsize); void free(void *ptr);
alloca Function

One additional function is also worth mentioning. The function alloca has the same calling sequence as malloc; however, instead of allocating memory from the heap, the memory is allocated from the stack frame of the current function. The advantage is that we don't have to free the space; it goes away automatically when the function returns.

7.9. Environment Variables

#include <stdlib.h> char *getenv(const char *name); Note that this function returns a pointer to the value of a name=value string. We should always use getenv to fetch a specific value from the environment, instead of accessing environ directly. int putenv(char *str); //replace the old one if exists int setenv(const char *name, const char *value, int rewrite); //the old one is not removed, if rewrite is 0. Otherwise , replace. int unsetenv(const char *name);
Figure 7.7. Environment variables defined in the Single UNIX Specification
增加、修改新的环境变量时比较复杂,要考虑内存空间分配。

7.10. setjmp and longjmp Functions(?)

 #include <setjmp.h> int setjmp(jmp_buf env); void longjmp(jmp_buf env, int val); valreturn valuevolatile阻止编译器将一些内存auto变量放进register里。 register里的变量在多层调用时,可能会roll back

7.11. getrlimit and setrlimit Functions(?)

 #include <sys/resource.h> int getrlimit(int resource, struct rlimit *rlptr); int setrlimit(int resource, const struct rlimit *rlptr); struct rlimit { rlim_t rlim_cur; /* soft limit: current limit */ rlim_t rlim_max; /* hard limit: maximum value for rlim_cur */ };

Three rules govern the changing of the resource limits.

  1. A process can change its soft limit to a value less than or equal to its hard limit.

  2. A process can lower its hard limit to a value greater than or equal to its soft limit. This lowering of the hard limit is irreversible for normal users.

  3. Only a superuser process can raise a hard limit.

内容概要:本文围绕“面向制造业的鲁棒机器学习集成计算流程研究”展开,重点介绍了一套基于Python实现的集成化计算框架,旨在提升制造业中数据驱动模型的稳定性与泛化能力。该流程融合了数据预处理、特征工程、模型训练、鲁棒性优化及结果验证等多个环节,结合实际制造场景中的不确定性因素(如噪声、缺面向制造业的鲁棒机器学习集成计算流程研究(Python代码实现)失数据、工况变化等),提出抗干扰能力强的机器学习解决方案。文中通过具体案例展示了该流程在质量预测、故障诊断或生产优化等方面的应用效果,强调模块化设计与可扩展性,便于在不同制造系统中部署。; 适合人群:具备Python编程基础和机器学习基础知识,从事智能制造、工业数据分析、生产优化等相关领域的研究人员及工程技术人员,尤其适合高校研究生及企业研发人员; 使用场景及目标:①应用于智能制造中的质量控制、设备预测性维护、工艺参数优化等场景;②构建稳定可靠的工业AI模型,应对实际生产中的数据噪声与工况波动;③为制造业数字化转型提供可复用的机器学习集成流程参考; 阅读建议:建议结合文中提供的Python代码实例,逐步复现各模块功能,重点关注数据鲁棒处理与模型集成策略的设计思路,并在实际工业数据集上进行验证与调优,以深入掌握该集成流程的核心机制与应用技巧。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值