tf.one_hot()用法 独热编码

本文深入解析了TensorFlow中tf.one_hot()函数的使用方法,通过实例演示如何进行独热编码,适用于多分类问题,特别是在交叉熵损失函数的场景中。
部署运行你感兴趣的模型镜像

tf.one_hot()进行独热编码

首先肯定需要解释下什么叫做独热编码(one-hot encoding),独热编码一般是在有监督学习中对数据集进行标注时候使用的,指的是在分类问题中,将存在数据类别的那一类用X表示,不存在的用Y表示,这里的X常常是1, Y常常是0。
举个例子:
比如我们有一个5类分类问题,我们有数据(Xi,Yi),其中类别Yi有五种取值(因为是五类分类问题),所以如果Yj为第一类那么其独热编码为: [1,0,0,0,0],如果是第二类那么独热编码为:[0,1,0,0,0],也就是说只对存在有该类别的数的位置上进行标记为1,其他皆为0。这个编码方式经常用于多分类问题,特别是损失函数为交叉熵函数的时候。接下来我们再介绍下TensorFlow中自带的对数据进行独热编码的函数tf.one_hot(),首先先贴出其API手册

one_hot(
    indices,#输入,这里是一维的
    depth,# one hot dimension.
    on_value=None,#output 默认1
    off_value=None,#output 默认0
    axis=None,
    dtype=None,
    name=None
)

 

需要指定indices,和depth,其中depth是编码深度,on_value和off_value相当于是编码后的开闭值,如同我们刚才描述的X值和Y值,需要和dtype相同类型(指定了dtype的情况下),axis指定编码的轴。这里给个小的实例:

 

import tensorflow as tf
var0 = tf.one_hot(indices=[1, 2, 3], depth=3, axis=0)
var1 = tf.one_hot(indices=[1, 2, 3], depth=4, axis=0)
var2 = tf.one_hot(indices=[1, 2, 3], depth=4, axis=1)
# axis=1 按行排
var3 = tf.one_hot(indices=[1, 2, 3], depth=4, axis=-1)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    a0 = sess.run(var0)
    a1 = sess.run(var1)
    a2 = sess.run(var2)
    a3 = sess.run(var3)
    print("var0(axis=0 depth=3)\n",a0)
    print("var1(axis=0 depth=4P)\n",a1)
    print("var2(axis=1)\n",a2)
    print("var3(axis=-1)\n",a3)

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

对下面代码进行改错 import tensorflow.compat.v1 as tf tf.compat.v1.disable_eager_execution() from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) num_classes = 10 input_size = 784 hidden_units_size = 30 batch_size = 100 training_iterations = 10000 X = tf.placeholder(tf.float32, [None, input_size]) Y = tf.placeholder(tf.float32, [None, num_classes]) W1 = tf.Variable(tf.random_normal([input_size, hidden_units_size],stddev = 0.1)) B1 = tf.Variable(tf.constant([hidden_units_size])) W2 = tf.Variable(tf.random_normal ([hidden_units_size,num_classes],stddev = 0.1)) B2 = tf.Variable(tf.constant(0.1), [num_classes]) hidden_opt = tf.matmul(X, W1) + B1 hidden_opt = tf.nn.relu(hidden_opt) final_opt = tf.matmul(hidden_opt, W2) + B2 final_opt = tf.nn.relu(final_opt) loss1 = tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=final_opt) loss = tf.reduce_mean(loss1) opt = tf.train.GradientDescentOptimizer(0.05).minimize(loss) init = tf.global_variables_initializer() correct_prediction = tf.equal(tf.argmax(Y,1), tf.argmax(final_opt,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float')) sess = tf.Session() sess.run(init) for i in range(training_iterations): batch = mnist.train.next_batch(batch_size) batch_input = batch[0] batch_labels = batch[1] train_loss = sess.run([opt, loss], feed_dict={X: batch_input, Y: batch_labels}) if i % 100 == 0: train_accuracy = accuracy.eval (session = sess, feed_dict={X: batch_input, Y: batch_labels}) print("step %d, training accuracy %g" % (i, train_accuracy))
04-01
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值