numpy与matplotlib可视化

这篇博客介绍了如何结合numpy函数和matplotlib库进行数据可视化,包括插入表格和绘制散点图,并提供了关于图例位置和散点图图例标记点数的详细说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

numpy函数

import numpy as np
#均值
np.mean(item)
#方差
np.var(item)
#中位数
np.median(item)
#四分位数
np.percentile(item,25)    #下四分位数
np.percentile(item,75)    #上四分位数

 插入表格

from IPython.display import display
# 样式
df = pd.DataFrame(data,index=['Setosa', 'Versicolour', 'Virginica'], columns=['均值','方差','中位数','下四分位数','上四分位数'])
display(df)

matplotlib函数

import matplotlib.pyplot as plt
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']     #中文显示
#在jupyter显示
%matplotlib inline
plt.title('标题')
#箱状图(盒图)

plt.boxplot(LIST,labels=['Setosa', 'Versicolour', 'Virginica'])
plt.title('SepaLengthCm:花萼长度,单位cm')
plt.show()

#分位数图

k = [x for x in range(50)]
# print(p)
p = plt.scatter(k,np.sort(LIST[0]), color = 'red')
q = plt.scatter(k,np.sort(LIST[1]), color = 'yellow')
r = plt.scatter(k,np.sort(LIST[2]), color = 'blue')
plt.legend([p,q,r], ['Setosa', 'Versicolour', 'Virginica'], loc='upper left', scatterpoints=1)
plt.show()

loc为图例所有figure位置。

0: ‘best'

1: ‘upper right'

2: ‘upper left'

3: ‘lower left'

4: ‘lower right'

5: ‘right'

6: ‘center left'

7: ‘center right'

8: ‘lower center'

9: ‘upper center'

10: ‘center'

scatterpoints为散点图图例条目创建的标记点数。

例子:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from IPython.display import display
from sklearn.datasets import load_iris    #导入数据集iris
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']     #中文显示
#在jupyter显示
%matplotlib inline
print('SepaLengthCm:花萼长度,单位cm - 第1组')
#载入数据集  
iris = load_iris()  
# print(iris.data)          #输出数据集  
# print(iris.target)         #输出真实标签  
#获取花卉两列数据集 
# 花萼长度
DD = iris.data  
nums = [x[0] for x in DD]

# 按种类分组,每组50
LIST = [nums[m:m+50] for m in range(150) if m%50==0]
# print(li)

#统计描述各项参数
data = []
for item in LIST:
#     print(item)
    datalist = []
    #均值
    datalist.append(np.mean(item))
    #方差
    datalist.append(np.var(item))
    #中位数
    datalist.append(np.median(item))
    #四分位数
    datalist.append(np.percentile(item,25))
    datalist.append(np.percentile(item,75))
    #添加得到的该行数据
    data.append(datalist) 
# 样式
df = pd.DataFrame(data,index=['Setosa', 'Versicolour', 'Virginica'], columns=['均值','方差','中位数','下四分位数','上四分位数'])
display(df)

plt.boxplot(LIST,labels=['Setosa', 'Versicolour', 'Virginica'])
plt.title('SepaLengthCm:花萼长度,单位cm')
plt.show()
k = [x for x in range(50)]
# print(p)
p = plt.scatter(k,np.sort(LIST[0]), color = 'red')
q = plt.scatter(k,np.sort(LIST[1]), color = 'yellow')
r = plt.scatter(k,np.sort(LIST[2]), color = 'blue')
plt.legend([p,q,r], ['Setosa', 'Versicolour', 'Virginica'], loc='upper left', scatterpoints=1)
plt.title('SepaLengthCm:花萼长度,单位cm')
plt.show()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值