固定随机种子-本人备忘录

本文介绍了如何在目标检测模型Yolov7中添加代码来固定随机种子,确保实验可复现性。通过在utils/general.py文件中添加set_seeds函数,并在train.py文件中调用,结合PyTorch的随机数生成器设置,可以实现训练过程的确定性。此外,还提到了对CUDNN的行为调整以增强一致性。
部署运行你感兴趣的模型镜像

本文全部经验来自 目标检测tricks-如何固定随机种子(以yolov7为例)_哔哩哔哩_bilibili

添加固定随机种子代码到yolov7的utils/general.py文件中代码如下:

import pkg_resources as pkg
def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
    # Check version vs. required version
    current, minimum = (pkg.parse_version(x) for x in (current, minimum))
    result = (current == minimum) if pinned else (current >= minimum)  # bool
    return result


def set_seeds(seed=0, deterministic=False):
    # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)  # for Multi-GPU, exception safe
    # torch.backends.cudnn.benchmark = True  # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
    if deterministic and check_version(torch.__version__, '1.12.0'):  # https://github.com/ultralytics/yolov5/pull/8213
        torch.use_deterministic_algorithms(True)
        torch.backends.cudnn.deterministic = True
        os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
        os.environ['PYTHONHASHSEED'] = str(seed)

在train,py文件里添加:

1.在import里添加set_seeds导入

2.在train.py文件里把1的位置注释掉,添加2的代码

结束,所有工作添加完成。 

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值