Python学习笔记 - IO编程

本文介绍了Python中的文件读写操作,包括使用不同方法读取文件内容、写入文件及使用StringIO和BytesIO进行内存读写操作。同时,还探讨了序列化与反序列化的方法。

Python学习笔记 - IO编程

根据廖雪峰的Python教程做成的笔记,其中不包含全部知识点,仅是重点或是容易发生混淆或者忘记的部分。

1. 文件读写

1.1 打开文件

  • 基本方法
f = open('E:\codePractice/Python/readme.txt', 'r') 
# 文件读写操作略...(见下文)
f.close()
  • 简单方法
    使用with语句免去了close()的操作。
with open('E:\codePractice/Python/readme.txt', 'r') as f:
    s = f.read()
    print('s = ', s)

1.2 读文件

  • read()
    读取文件全部内容。
with open('E:\codePractice/Python/readme.txt', 'r') as f:
    s = f.read()
    print('s = ', s)
# 输出:
# s = C
# C++
# Python
  • read(size)
    如果文件太大(如10G),使用read()的话内存就爆了,这是可以使用read(size)指定要读取的size(字节数)
  • readline()
    读取一行。
with open('E:\codePractice/Python/readme.txt', 'r') as f:
    s = d.readline()
    print('s = ', s)
# 输出:
# s = C
  • readlines()
    读取文件全部内容按行返回list。
with open('E:\codePractice/Python/readme.txt', 'r') as f:
    for s in f.readlines():
        print('s' = )
# 输出
# s = C
# s = C++
# s = Python

1.3 写文件

1.3.1 写文件

with open('E:\codePractice/Python/readme.txt', 'w') as f:
    f.write('Hello')

1.3.2 mode文件操作模式

mode说明备注
r可读不可写
w可写不可读写时删除文件既存内容,重新写入
a可写不可读写时不删除文件既存内容,在文件末尾追加
r+可读写写时不删除文件既存既存内容,但会从文件开头逐渐覆盖既存内容
w+可读写写时删除文件既存内容,重新写入
a+可读写写时不删除文件既存内容,在文件末尾追加

2. StringIO和BytesIO

StringIO顾名思义就是在内存中读写str。

2.1 StringIO

2.1.1 写入IO

from io import StringIO

f = StringIO()  # 创建IO
f.write('Hello\nworld!\n') # 内容写入IO
print(f.getvalue()) # 取得IO中的内容并输出

# 输出
# Hello
# world!

2.1.2 从IO中读取

from io import StringIO

f = StringIO('Hello\nworld\n!!!\n')
while True:
    s = f.readline()
    if s == '':
        break
    print(s.strip())
# 输出
# Hello
# world
# !!!

2.2 BytesIO

StringIO操作的只能是str,如果要操作二进制数据,就需要使用BytesIO。

BytesIO实现了在内存中读写bytes,我们创建一个BytesIO,然后写入一些bytes:

>>> from io import BytesIO
>>> f = BytesIO()
>>> f.write('中文'.encode('utf-8'))
6
>>> print(f.getvalue())
b'\xe4\xb8\xad\xe6\x96\x87'

请注意,写入的不是str,而是经过UTF-8编码的bytes。

和StringIO类似,可以用一个bytes初始化BytesIO,然后,像读文件一样读取:

>>> from io import BytesIO
>>> f = BytesIO(b'\xe4\xb8\xad\xe6\x96\x87')
>>> f.read()
b'\xe4\xb8\xad\xe6\x96\x87'

3. 序列化

变量序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。
Python提供了pickle模块来实现序列化。

变量写入文件可以使用pickle.dump()函数,从文件中读取使用pickle.load()函数。

例:把dict写入文件再读出。

import pickle

def save_d():
    f = open('readme.txt', 'wb')
    d = dict(name = 'Bob', age = 26, score = 88)
    print('d = ', d)
    d['age'] = 30
    d['number'] = 1
    pickle.dump(d, f)
    f.close()

def get_d():
    f = open('readme.txt', 'rb')
    d = pickle.load(f)
    f.close()
    print('d = ', d)

save_d()
get_d()

# 输出:
# d =  {'name': 'Bob', 'score': 88, 'age': 26}
# d =  {'name': 'Bob', 'number': 1, 'score': 88, 'age': 30}

注意:Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。

Json
如果我们要在不同的编程语言之间传递对象,可以把对象序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。

import json

f = open('readme.json', 'w')
d = dict(name = 'Bob', age = 26, score = 88)
json.dump(d, f)
f.close()

f1 = open('readme.json', 'r')
a = json.load(f1)
print(a['name'])
f1.close()
课程设计报告:总体方案设计说明 一、软件开发环境配置 本系统采用C++作为核心编程语言,结合Qt 5.12.7框架进行图形用户界面开发。数据库管理系统选用MySQL,用于存储用户数据与小精灵信息。集成开发环境为Qt Creator,操作系统平台为Windows 10。 二、窗口界面架构设计 系统界面由多个功能模块构成,各模块职责明确,具体如下: 1. 起始界面模块(Widget) 作为应用程序的入口界面,提供初始导航功能。 2. 身份验证模块(Login) 负责处理用户登录与账户注册流程,实现身份认证机制。 3. 游戏主大厅模块(Lobby) 作为用户登录后的核心交互区域,集成各项功能入口。 4. 资源管理模块(BagWidget) 展示用户持有的全部小精灵资产,提供可视化资源管理界面。 5. 精灵详情模块(SpiritInfo) 呈现选定小精灵的完整属性数据与状态信息。 6. 用户名录模块(UserList) 系统内所有注册用户的基本信息列表展示界面。 7. 个人资料模块(UserInfo) 显示当前用户的详细账户资料与历史数据统计。 8. 服务器精灵选择模块(Choose) 对战准备阶段,从服务器可用精灵池中选取参战单位的专用界面。 9. 玩家精灵选择模块(Choose2) 对战准备阶段,从玩家自有精灵库中筛选参战单位的操作界面。 10. 对战演算模块(FightWidget) 实时模拟精灵对战过程,动态呈现战斗动画与状态变化。 11. 对战结算模块(ResultWidget) 对战结束后,系统生成并展示战斗结果报告与数据统计。 各模块通过统一的事件驱动机制实现数据通信与状态同步,确保系统功能的连贯性与数据一致性。界面布局遵循模块化设计原则,采用响应式视觉方案适配不同显示环境。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
D3.js作为一种基于JavaScript的数据可视化框架,通过数据驱动的方式实现对网页元素的动态控制,广泛应用于网络结构的图形化呈现。在交互式网络拓扑可视化应用中,该框架展现出卓越的适应性与功能性,能够有效处理各类复杂网络数据的视觉表达需求。 网络拓扑可视化工具借助D3.js展示节点间的关联结构。其中,节点对应于网络实体,连线则表征实体间的交互关系。这种视觉呈现模式有助于用户迅速把握网络整体架构。当数据发生变化时,D3.js支持采用动态布局策略重新计算节点分布,从而保持信息呈现的清晰度与逻辑性。 网络状态监测界面是该工具的另一个关键组成部分,能够持续反映各连接通道的运行指标,包括传输速度、响应时间及带宽利用率等参数。通过对这些指标的持续追踪,用户可以及时评估网络性能状况并采取相应优化措施。 实时数据流处理机制是提升可视化动态效果的核心技术。D3.js凭借其高效的数据绑定特性,将连续更新的数据流同步映射至图形界面。这种即时渲染方式不仅提升了数据处理效率,同时改善了用户交互体验,确保用户始终获取最新的网络状态信息。 分层拓扑展示功能通过多级视图呈现网络的层次化特征。用户既可纵览全局网络架构,也能聚焦特定层级进行细致观察。各层级视图支持展开或收起操作,便于用户开展针对性的结构分析。 可视化样式定制系统使用户能够根据实际需求调整拓扑图的视觉表现。从色彩搭配、节点造型到整体布局,所有视觉元素均可进行个性化设置,以实现最优的信息传达效果。 支持拖拽与缩放操作的交互设计显著提升了工具的使用便利性。用户通过简单的视图操控即可快速浏览不同尺度的网络结构,这一功能降低了复杂网络系统的认知门槛,使可视化工具更具实用价值。 综上所述,基于D3.js开发的交互式网络拓扑可视化系统,整合了结构展示、动态布局、状态监控、实时数据处理、分层呈现及个性化配置等多重功能,形成了一套完整的网络管理解决方案。该系统不仅协助用户高效管理网络资源,还能提供持续的状态监测与深度分析能力,在网络运维领域具有重要应用价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
代码转载自:https://pan.quark.cn/s/74eb7b5f49ba DIPm 一个使用MATLAB App Designer开发的简单数字图像处理APP 图像处理函数 自动调整 降噪 :二维自适应去噪滤波 基于图像的局部统计特性来估计噪声方差,并根据噪声的特性进行滤波。 这种滤波方法通常在存在噪声的图像中能够有效地减少噪声并保持图像的细节。 伽马校正 :将线性 RGB 值应用伽马校正,使其转换为适合显示的 sRGB 色彩空间。 对图像中的像素值进行非线性变换,使较暗区域的细节更加可见,同时保持较亮区域的细节不被过度压缩。 这样可以增强图像的对比度,使其在显示时更加生动和自然。 自动白平衡 当人们用眼晴观察自然世界时,在不同的光线下,对相同颜色的感觉基本是相同的,大脑已经对不同光线下的物体的彩色还原有了适应性。 这种现象称为颜色恒常性。 不幸的是,CMOS或CCD等感光器件没有这样的适应能力。 为了使得摄像机也具有颜色恒常性能力,需要使用白平衡技术。 所谓白平衡(WiteBalance),简单地说就是去除环境光的影响,还原物体真实的颜色,把不同色温下的白颜色调整正确。 从理论上说白颜色调整正确了,其他色彩就都准确了。 即在红色灯光照射下,白色物体依然呈白色,在蓝色灯光照射下也呈现白色。 灰度世界算法以灰度世界假设为基础,该假设认为:对于一幅有着大量色彩变化的图像,其R,G,B 三个色彩分量的平均值趋于同一灰度值 K。 从物理意义上讲,灰色世界法假设自然界景物对于光线的平均反射的均值在总体上是个定值,这个定值近似地为“灰色”。 颜色平衡算法将这一假设强制应用于待处理图像,可以从图像中消除环境光的影响,获得原始场景图像。 自动对比度增强 MATLAB中有三个函数适用...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值