Total Submission(s) : 60 Accepted Submission(s) : 26
Problem Description A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output For each test case, print the value of f(n) on a single line.
Sample Input1 1 3
1 2 10
0 0 0
Sample Output2
5
#include<stdio.h>
int mytype(int a,int b,int n)
{
if(n==1||n==2)
return 1;
else
return (a*mytype(a,b,n-1)+b*mytype(a,b,n-2))%7;
}
int main()
{
int a,b,n;
while(scanf("%d%d%d",&a,&b,&n)&&(a||b||n))
{
printf("%d\n",mytype(a%7,b%7,n%49));
}
return 0;
}
本文介绍了一种解决特定数列问题的算法实现,通过递归函数计算模7数列的第n项值,适用于A、B参数在一定范围内的大规模输入测试案例。算法考虑了边界条件,并使用模运算确保结果的正确性。
379

被折叠的 条评论
为什么被折叠?



