The area
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 10810 Accepted Submission(s): 7620
Problem Description
Ignatius bought a land last week, but he didn't know the area of the land because the land is enclosed by a parabola and a straight line. The picture below shows the area. Now given all the intersectant points shows in the picture, can you tell Ignatius the area of the land?
Note: The point P1 in the picture is the vertex of the parabola.
Note: The point P1 in the picture is the vertex of the parabola.

Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains three intersectant points which shows in the picture, they are given in the order of P1, P2, P3. Each point is described by two floating-point numbers X and Y(0.0<=X,Y<=1000.0).
Each test case contains three intersectant points which shows in the picture, they are given in the order of P1, P2, P3. Each point is described by two floating-point numbers X and Y(0.0<=X,Y<=1000.0).
Output
For each test case, you should output the area of the land, the result should be rounded to 2 decimal places.
Sample Input
2 5.000000 5.000000 0.000000 0.000000 10.000000 0.000000 10.000000 10.000000 1.000000 1.000000 14.000000 8.222222
Sample Output
33.33 40.69题意:求阴影部分的面积利用高中的积分知识可得:抛物线得到的面积减去直线得到的面积,就是阴影部分的面积求一般方程如下求抛物线方程:已知三点求解抛物线方程:x1^2a+x1b+c=y1已知直线求方程:
x2^2a+x2b+c=y2
x3^2a+x3b+c=y3
D=x1^2*x2-x1^2*x3-x2^2*x1+x2^2*x3+x3^2*x1-x3^2*x2
D1=y1*x2-y1*x3-y2*x1+y2*x3+y3*x1-y3*x2
D2=x1^2*y2-x1^2*y3-x2^2*y1+x2^2*y3+x3^2*y1-x3^2*y2
D3=x1^2*y3*x2-x1^2*y2*x3-x2^2*y3*x1+x2^2*y1*x3+x3^2*y2*x1-x3^2*y1*x2
A=D1/D
B=D2/D
C=D3/DA=(Y1-Y2)/(X1-X2) B=Y1-A*X1
得到参数后直接求解面积就可以了
代码如下:#include<cstdio> #include<iostream> #include<cmath> using namespace std; double x1,x2,x3; double y,y2,y3; double a,b,c; double fun(double p,double q) { double A=1.0*a*p*p*p/3+1.0*b*p*p/2+c*p; double B=1.0*a*q*q*q/3+1.0*b*q*q/2+c*q; return B-A; } void init() { double d=x1*x1*x2-x1*x1*x3-x2*x2*x1+x2*x2*x3+x3*x3*x1-x3*x3*x2; double d1=y*x2-y*x3-y2*x1+y2*x3+y3*x1-y3*x2; double d2=x1*x1*y2-x1*x1*y3-x2*x2*y+x2*x2*y3+x3*x3*y-x3*x3*y2; double d3=x1*x1*y3*x2-x1*x1*y2*x3-x2*x2*y3*x1+x2*x2*y*x3+x3*x3*y2*x1-x3*x3*y*x2; a=d1/d; b=d2/d; c=d3/d; // printf("a=%.2f\nb=%.2f\nc=%.2f\n",a,b,c); } int main() { int t; scanf("%d",&t); while(t--) { scanf("%lf%lf",&x1,&y); scanf("%lf%lf",&x2,&y2); scanf("%lf%lf",&x3,&y3); init(); double b1=(y2-y3)/(x2-x3); double c1=y2-b1*x2; // printf("b1=%.2f\nc1=%.2f\n",b1,c1); b=b-b1; c=c-c1; // printf("b=%.2f\nc=%.2f\n",b,c); printf("%.2f\n",fun(x2,x3)); } return 0; }
点击打开链接http://acm.hdu.edu.cn/showproblem.php?pid=1071