题目链接:点击打开链接
Bellovin
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 996 Accepted Submission(s): 447
Problem Description
Peter has a sequence
a1,a2,...,an
and he define a function on the sequence --
F(a1,a2,...,an)=(f1,f2,...,fn)
, where
fi
is the length of the longest increasing subsequence ending with
ai
.
Peter would like to find another sequence b1,b2,...,bn in such a manner that F(a1,a2,...,an) equals to F(b1,b2,...,bn) . Among all the possible sequences consisting of only positive integers, Peter wants the lexicographically smallest one.
The sequence a1,a2,...,an is lexicographically smaller than sequence b1,b2,...,bn , if there is such number i from 1 to n , that ak=bk for 1≤k<i and ai<bi .
Peter would like to find another sequence b1,b2,...,bn in such a manner that F(a1,a2,...,an) equals to F(b1,b2,...,bn) . Among all the possible sequences consisting of only positive integers, Peter wants the lexicographically smallest one.
The sequence a1,a2,...,an is lexicographically smaller than sequence b1,b2,...,bn , if there is such number i from 1 to n , that ak=bk for 1≤k<i and ai<bi .
Input
There are multiple test cases. The first line of input contains an integer
T
, indicating the number of test cases. For each test case:
The first contains an integer n (1≤n≤100000) -- the length of the sequence. The second line contains n integers a1,a2,...,an (1≤ai≤109) .
The first contains an integer n (1≤n≤100000) -- the length of the sequence. The second line contains n integers a1,a2,...,an (1≤ai≤109) .
Output
For each test case, output
n
integers
b1,b2,...,bn
(1≤bi≤109)
denoting the lexicographically smallest sequence.
Sample Input
3 1 10 5 5 4 3 2 1 3 1 3 5
Sample Output
1 1 1 1 1 1 1 2 3
题意:
问题描述
Peter有一个序列a1,a2,...,an. 定义F(a1,a2,...,an)=(f1,f2,...,fn), 其中fi是以ai结尾的最长上升子序列的长度. Peter想要找到另一个序列b1,b2,...,bn使得F(a1,a2,...,an)和F(b1,b2,...,bn)相同. 对于所有可行的正整数序列, Peter想要那个字典序最小的序列. 序列a1,a2,...,an比b1,b2,...,bn字典序小, 当且仅当存在一个正整数i (1≤i≤n)满足对于所有的k (1≤k<i)都有ak=bk并且ai<bi.
输入描述
输入包含多组数据, 第一行包含一个整数T表示测试数据组数. 对于每组数据: 第一行包含一个整数n (1≤n≤100000)表示序列的长度. 第二行包含n个整数a1,a2,...,an (1≤ai≤109).
输出描述
对于每组数据, 输出n个整数b1,b2,...,bn (1≤bi≤109)表示那个字典序最小的序列.
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAX=1e5+10;
const int INF=0x3f3f3f3f;
int n;
int dp[MAX];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
fill(dp,dp+n,INF);
int a,len;
for(int i=0;i<n;i++)
{
scanf("%d",&a);
len=lower_bound(dp,dp+n,a)-dp;
dp[len]=a; // 把数插入数组
printf(i==0?"%d":" %d",len+1);
}
puts("");
}
return 0;
}