You are given a permutation p of numbers 1, 2, ..., n. Let's define f(p) as the following sum:

Find the lexicographically m-th permutation of length n in the set of permutations having the maximum possible value of f(p).
The single line of input contains two integers n and m (1 ≤ m ≤ cntn), where cntn is the number of permutations of length n with maximum possible value of f(p).
The problem consists of two subproblems. The subproblems have different constraints on the input. You will get some score for the correct submission of the subproblem. The description of the subproblems follows.
- In subproblem B1 (3 points), the constraint 1 ≤ n ≤ 8 will hold.
- In subproblem B2 (4 points), the constraint 1 ≤ n ≤ 50 will hold.
Output n number forming the required permutation.
2 2
2 1
3 2
1 3 2
In the first example, both permutations of numbers {1, 2} yield maximum possible f(p) which is equal to 4. Among them, (2, 1) comes second in lexicographical order.
这个题主要是让你求 根据公式,然后求f(p)最大值的情况下,第m个排列是什么
这是简单版本,所以暴力搞
#include<iostream>
#include<cstdio>#include<string.h>
#include<string>
#include<set>
#include<algorithm>
#include<cmath>
#define ll __int64
#define MAX 1000009
using namespace std;
/*
纯纯的暴力··· 1<=n<=8 暴力可搞
最开始没有想到公式的意思,数学好渣ing
高数还在大挂
*/
int a[MAX];
int solve(int n)
{
int sum = 0;
int _min;
for(int i = 1; i<=n; i++)
{
for(int j = i; j<=n; j++)
{
_min = MAX;
for(int k = i; k<=j; k++)
{
_min = min(_min,a[k]);
}
sum+=_min;
//cout<<sum<<endl;
}
}
return sum;
}
int main()
{
int n,m;
int i,j;
int maxn;
while(~scanf("%d%d",&n,&m))
{
maxn = -MAX;
for(i = 1; i<=n; i++)
a[i] = i;
do
{
maxn = max(maxn,solve(n));
}
while(next_permutation(a+1,a+n+1));
cout<<maxn<<endl;
sort(a+1,a+n+1);
do
{
if(maxn == solve(n))
{
m--;
if(m==0)break;
}
}
while(next_permutation(a+1,a+n+1));
for(i=1; i<=n; i++)
{
if(i!=1)
{
cout<<" ";
}
cout<<a[i];
}
cout<<endl;
}
return 0;
}
本文深入解析了B1版本的Permutations问题,重点在于如何找到具有最大可能值的f(p)的第m个排列。通过实例演示和代码实现,详细介绍了输入输出格式、解题思路及关键步骤,旨在帮助读者掌握该类问题的解决方法。
270

被折叠的 条评论
为什么被折叠?



