Red and Black

本文介绍了一个使用深度优先搜索算法解决特定问题的方法,即在一个由黑色和红色瓷砖组成的矩形房间里,从一个黑色瓷砖出发,只能在黑色瓷砖上行走,计算可以到达的黑色瓷砖数量。
Problem Description
There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can't move on red tiles, he can move only on black tiles.

Write a program to count the number of black tiles which he can reach by repeating the moves described above.
 

Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers W and H; W and H are the numbers of tiles in the x- and y- directions, respectively. W and H are not more than 20.

There are H more lines in the data set, each of which includes W characters. Each character represents the color of a tile as follows.

'.' - a black tile
'#' - a red tile
'@' - a man on a black tile(appears exactly once in a data set)
 

Output
For each data set, your program should output a line which contains the number of tiles he can reach from the initial tile (including itself).
 

Sample Input
6 9 ....#. .....# ...... ...... ...... ...... ...... #@...# .#..#. 11 9 .#......... .#.#######. .#.#.....#. .#.#.###.#. .#.#..@#.#. .#.#####.#. .#.......#. .#########. ........... 11 6 ..#..#..#.. ..#..#..#.. ..#..#..### ..#..#..#@. ..#..#..#.. ..#..#..#.. 7 7 ..#.#.. ..#.#.. ###.### ...@... ###.### ..#.#.. ..#.#.. 0 0
 

Sample Output
45 59 6 13


题解:深搜。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>

using namespace std;

char map[50][50];
int d[4][2] = {{0,-1},{0,1},{-1,0},{1,0}};
int n,m;
int sx,sy;
int ans;

void dfs(int x,int y)
{
	if(x < 0 || y < 0 || x >= n || y >= m || map[x][y] == '#')
	{
		return;
	}
	ans++;
	map[x][y] = '#';
	for(int i = 0;i < 4;i++)
	{
		dfs(x + d[i][0],y + d[i][1]);
	}
}

int main()
{
	while(scanf("%d%d",&m,&n) != EOF && (m + n) != 0)
	{
		getchar();
		for(int i = 0;i < n;i++)
		{
			for(int j = 0;j < m;j++)
			{
				scanf("%c",&map[i][j]);
				if(map[i][j] == '@')
				{
					sx = i;
					sy = j;
				}
			}
			getchar();
		}
		
		ans = 0;
		dfs(sx,sy);
		
		printf("%d\n",ans);
	}

	
	return 0;
}


【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究(Matlab代码实现)内容概要:本文围绕【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究展开,重点介绍基于Matlab的代码实现方法。文章系统阐述了遍历理论的基本概念、动态模态分解(DMD)的数学原理及其与库普曼算子谱特性之间的内在联系,展示了如何通过数值计算手段分析非线性动力系统的演化行为。文中提供了完整的Matlab代码示例,涵盖数据驱动的模态分解、谱分析及可视化过程,帮助读者理解并复现相关算法。同时,文档还列举了多个相关的科研方向和技术应用场景,体现出该方法在复杂系统建模与分析中的广泛适用性。; 适合人群:具备一定动力系统、线性代数与数值分析基础,熟悉Matlab编程,从事控制理论、流体力学、信号处理或数据驱动建模等领域研究的研究生、博士生及科研人员。; 使用场景及目标:①深入理解库普曼算子理论及其在非线性系统分析中的应用;②掌握动态模态分解(DMD)算法的实现与优化;③应用于流体动力学、气候建模、生物系统、电力系统等领域的时空模态提取与预测;④支撑高水平论文复现与科研项目开发。; 阅读建议:建议读者结合Matlab代码逐段调试运行,对照理论推导加深理解;推荐参考文中提及的相关研究方向拓展应用场景;鼓励在实际数据上验证算法性能,并尝试改进与扩展算法功能。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值