Problem Description
Give you three sequences of numbers A, B, C, then we give you a number X. Now you need to calculate if you can find the three numbers Ai, Bj, Ck, which satisfy the formula Ai+Bj+Ck = X.
Input
There are many cases. Every data case is described as followed: In the first line there are three integers L, N, M, in the second line there are L integers represent the sequence A, in the third line there are N integers represent
the sequences B, in the forth line there are M integers represent the sequence C. In the fifth line there is an integer S represents there are S integers X to be calculated. 1<=L, N, M<=500, 1<=S<=1000. all the integers are 32-integers.
Output
For each case, firstly you have to print the case number as the form "Case d:", then for the S queries, you calculate if the formula can be satisfied or not. If satisfied, you print "YES", otherwise print "NO".
Sample Input
3 3 3 1 2 3 1 2 3 1 2 3 3 1 4 10
Sample Output
Case 1: NO YES NO
题解:二分题目,现将a,b合成一个数组,再将c移到右边,就相当于在新数组查找一个数,不过需要先排序,这是二分的特点。排序才nlogn。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int a[550];
int b[550];
int c[550];
int d[300000];
int main()
{
int l,n,m;
int cnt = 0;
while(scanf("%d%d%d",&l,&n,&m) != EOF)
{
for(int i = 0;i < l;i++)
{
scanf("%d",a + i);
}
for(int i = 0;i < n;i++)
{
scanf("%d",b + i);
}
for(int i = 0;i < m;i++)
{
scanf("%d",c + i);
}
int k = 0;
for(int i = 0;i < l;i++)
{
for(int j = 0;j < n;j++)
{
d[k++] = a[i] + b[j];
}
}
sort(d,d + k);
int num;
int s;
scanf("%d",&s);
printf("Case %d:\n",++cnt);
for(int i = 0;i < s;i++)
{
scanf("%d",&num);
bool flag = false;
for(int j = 0;j < m;j++)
{
int x = num - c[j];
int y = lower_bound(d,d + k,x) - d;
if(y != k && d[y] == x)
{
flag = true;
break;
}
}
if(flag)
{
printf("YES\n");
}
else
{
printf("NO\n");
}
}
}
return 0;
}