质数相关

快速判断素数

bool prime(int n)  
{  
    if(n==3 || n==2)  
    return true;  
    if(n%2==0 || n%3==0 || n==1)  
    return false;  
    int k = sqrt(n)+1;  
    for(int i = 5;i < k;i += 6)  
        if(n%i==0 || n%(i+2)==0)  
        return false;  
return true;  
}  

编译出来100w内的质数

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define PRIME_SIZE  100000

int main(void)
{
    int i,j=0,k;
    int a[PRIME_SIZE];
    char temp[100] = "";
    FILE*fp=fopen("prime.txt","w");

    a[0]=2;
    j=1;
    sprintf(temp, "%d\n", 2);
    fwrite(temp,1,strlen(temp),fp);

    for(i=3;i<1000000;i+=2)
    {
        for(k=0;k<j;k++)
        {
            if(i%a[k]==0)
                break;
        }

        if(k >= j)
        {
            //prime number
            a[j]=i;
            j++;
            sprintf(temp, "%d\n", i);
            fwrite(temp,1,strlen(temp),fp);
        }
    }
    fclose(fp);
    printf("DONE!!\n");
    return 0;
}

求解第n个质数

内存开销小还跑得快

#include <bits/stdtr1c++.h>

#define MAXN 100
#define MAXM 10001
#define MAXP 40000
#define MAX 400000
#define clr(ar) memset(ar, 0, sizeof(ar))
#define read() freopen("lol.txt", "r", stdin)
#define dbg(x) cout << #x << " = " << x << endl
#define chkbit(ar, i) (((ar[(i) >> 6]) & (1 << (((i) >> 1) & 31))))
#define setbit(ar, i) (((ar[(i) >> 6]) |= (1 << (((i) >> 1) & 31))))
#define isprime(x) (( (x) && ((x)&1) && (!chkbit(ar, (x)))) || ((x) == 2))

using namespace std;

namespace pcf{
    long long dp[MAXN][MAXM];
    unsigned int ar[(MAX >> 6) + 5] = {0};
    int len = 0, primes[MAXP], counter[MAX];

    void Sieve(){
        setbit(ar, 0), setbit(ar, 1);
        for (int i = 3; (i * i) < MAX; i++, i++){
            if (!chkbit(ar, i)){
                int k = i << 1;
                for (int j = (i * i); j < MAX; j += k) setbit(ar, j);
            }
        }

        for (int i = 1; i < MAX; i++){
            counter[i] = counter[i - 1];
            if (isprime(i)) primes[len++] = i, counter[i]++;
        }
    }

    void init(){
        Sieve();
        for (int n = 0; n < MAXN; n++){
            for (int m = 0; m < MAXM; m++){
                if (!n) dp[n][m] = m;
                else dp[n][m] = dp[n - 1][m] - dp[n - 1][m / primes[n - 1]];
            }
        }
    }

    long long phi(long long m, int n){
        if (n == 0) return m;
        if (primes[n - 1] >= m) return 1;
        if (m < MAXM && n < MAXN) return dp[n][m];
        return phi(m, n - 1) - phi(m / primes[n - 1], n - 1);
    }

    long long Lehmer(long long m){
        if (m < MAX) return counter[m];

        long long w, res = 0;
        int i, a, s, c, x, y;
        s = sqrt(0.9 + m), y = c = cbrt(0.9 + m);
        a = counter[y], res = phi(m, a) + a - 1;
        for (i = a; primes[i] <= s; i++) res = res - Lehmer(m / primes[i]) + Lehmer(primes[i]) - 1;
        return res;
    }
}

long long solve(long long n){
    int i, j, k, l;
    long long x, y, res = 0;

    for (i = 0; i < pcf::len; i++){
        x = pcf::primes[i], y = n / x;
        if ((x * x) > n) break;
        res += (pcf::Lehmer(y) - pcf::Lehmer(x));
    }

    for (i = 0; i < pcf::len; i++){
        x = pcf::primes[i];
        if ((x * x * x) > n) break;
        res++;
    }

    return res;
}

int main(){
    pcf::init();
    long long n, res,L,R,M,ca=1;
    while (scanf("%lld", &n) != EOF){
        if(n==0) break;
        L=2;R=1e8;

        while(L<R){
            M=(L+R)/2;
            res=pcf::Lehmer(M);
            if(res>=n) R=M;
            else L=M+1;
        }
        printf("Case %lld: %lld\n",ca++,L);

    }
    return 0;
}
内存开销大跑得快 Meisell-Lehmer算法+二分搜索
#include <bits/stdtr1c++.h>

#define MAXN 100
#define MAXM 10001
#define MAXP 40000
#define MAX 400000
#define clr(ar) memset(ar, 0, sizeof(ar))
#define read() freopen("lol.txt", "r", stdin)
#define dbg(x) cout << #x << " = " << x << endl
#define chkbit(ar, i) (((ar[(i) >> 6]) & (1 << (((i) >> 1) & 31))))
#define setbit(ar, i) (((ar[(i) >> 6]) |= (1 << (((i) >> 1) & 31))))
#define isprime(x) (( (x) && ((x)&1) && (!chkbit(ar, (x)))) || ((x) == 2))

using namespace std;

namespace pcf{
    long long dp[MAXN][MAXM];
    unsigned int ar[(MAX >> 6) + 5] = {0};
    int len = 0, primes[MAXP], counter[MAX];

    void Sieve(){
        setbit(ar, 0), setbit(ar, 1);
        for (int i = 3; (i * i) < MAX; i++, i++){
            if (!chkbit(ar, i)){
                int k = i << 1;
                for (int j = (i * i); j < MAX; j += k) setbit(ar, j);
            }
        }

        for (int i = 1; i < MAX; i++){
            counter[i] = counter[i - 1];
            if (isprime(i)) primes[len++] = i, counter[i]++;
        }
    }

    void init(){
        Sieve();
        for (int n = 0; n < MAXN; n++){
            for (int m = 0; m < MAXM; m++){
                if (!n) dp[n][m] = m;
                else dp[n][m] = dp[n - 1][m] - dp[n - 1][m / primes[n - 1]];
            }
        }
    }

    long long phi(long long m, int n){
        if (n == 0) return m;
        if (primes[n - 1] >= m) return 1;
        if (m < MAXM && n < MAXN) return dp[n][m];
        return phi(m, n - 1) - phi(m / primes[n - 1], n - 1);
    }

    long long Lehmer(long long m){
        if (m < MAX) return counter[m];

        long long w, res = 0;
        int i, a, s, c, x, y;
        s = sqrt(0.9 + m), y = c = cbrt(0.9 + m);
        a = counter[y], res = phi(m, a) + a - 1;
        for (i = a; primes[i] <= s; i++) res = res - Lehmer(m / primes[i]) + Lehmer(primes[i]) - 1;
        return res;
    }
}

long long solve(long long n){
    int i, j, k, l;
    long long x, y, res = 0;

    for (i = 0; i < pcf::len; i++){
        x = pcf::primes[i], y = n / x;
        if ((x * x) > n) break;
        res += (pcf::Lehmer(y) - pcf::Lehmer(x));
    }

    for (i = 0; i < pcf::len; i++){
        x = pcf::primes[i];
        if ((x * x * x) > n) break;
        res++;
    }

    return res;
}

int main(){
    pcf::init();
    long long n, res,L,R,M,ca=1;
    while (scanf("%lld", &n) != EOF){
        if(n==0) break;
        L=2;R=1e8;

        while(L<R){
            M=(L+R)/2;
            res=pcf::Lehmer(M);
            if(res>=n) R=M;
            else L=M+1;
        }
        printf("Case %lld: %lld\n",ca++,L);

    }
    return 0;
}

Meisell-Lehmer算法模板( 计算2~n中的素数个数

bool np[maxn];
int prime[maxn],pi[maxn];

int getprime()
{
    int cnt=0;
    np[0]=np[1]=true;
    pi[0]=pi[1]=0;
    for(int i=2; i<maxn; ++i)
    {
        if(!np[i]) prime[++cnt]=i;
        pi[i]=cnt;
        for(int j=1; j<=cnt&&i*prime[j]<maxn; ++j)
        {
            np[i*prime[j]]=true;
            if(i%prime[j]==0) break;
        }
    }
    return cnt;
}
const int M=7;
const int PM=2*3*5*7*11*13*17;
int phi[PM+1][M+1],sz[M+1];
void init()
{
    getprime();
    sz[0]=1;
    for(int i=0; i<=PM; ++i) phi[i][0]=i;
    for(int i=1; i<=M; ++i)
    {
        sz[i]=prime[i]*sz[i-1];
        for(int j=1; j<=PM; ++j)
        {
            phi[j][i]=phi[j][i-1]-phi[j/prime[i]][i-1];
        }
    }
}
int sqrt2(ll x)
{
    ll r=(ll)sqrt(x-0.1);
    while(r*r<=x) ++r;
    return int(r-1);
}
int sqrt3(ll x)
{
    ll r=(ll)cbrt(x-0.1);
    while(r*r*r<=x) ++r;
    return int(r-1);
}
ll getphi(ll x,int s)
{
    if(s==0) return x;
    if(s<=M) return phi[x%sz[s]][s]+(x/sz[s])*phi[sz[s]][s];
    if(x<=prime[s]*prime[s]) return pi[x]-s+1;
    if(x<=prime[s]*prime[s]*prime[s]&&x<maxn)
    {
        int s2x=pi[sqrt2(x)];
        ll ans=pi[x]-(s2x+s-2)*(s2x-s+1)/2;
        for(int i=s+1; i<=s2x; ++i)
        {
            ans+=pi[x/prime[i]];
        }
        return ans;
    }
    return getphi(x,s-1)-getphi(x/prime[s],s-1);
}
ll getpi(ll x)
{
    if(x<maxn) return pi[x];
    ll ans=getphi(x,pi[sqrt3(x)])+pi[sqrt3(x)]-1;
    for(int i=pi[sqrt3(x)]+1,ed=pi[sqrt2(x)]; i<=ed; ++i)
    {
        ans-=getpi(x/prime[i])-i+1;
    }
    return ans;
}
ll lehmer_pi(ll x)
{
    if(x<maxn) return pi[x];
    int a=(int)lehmer_pi(sqrt2(sqrt2(x)));
    int b=(int)lehmer_pi(sqrt2(x));
    int c=(int)lehmer_pi(sqrt3(x));
    ll sum=getphi(x,a)+ll(b+a-2)*(b-a+1)/2;
    for(int i=a+1; i<=b; i++)
    {
        ll w=x/prime[i];
        sum-=lehmer_pi(w);
        if(i>c) continue;
        ll lim=lehmer_pi(sqrt2(w));
        for(int j=i; j<=lim; j++)
        {
            sum-=lehmer_pi(w/prime[j])-(j-1);
        }
    }
    return sum;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值