快速判断素数
bool prime(int n)
{
if(n==3 || n==2)
return true;
if(n%2==0 || n%3==0 || n==1)
return false;
int k = sqrt(n)+1;
for(int i = 5;i < k;i += 6)
if(n%i==0 || n%(i+2)==0)
return false;
return true;
}
编译出来100w内的质数
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define PRIME_SIZE 100000
int main(void)
{
int i,j=0,k;
int a[PRIME_SIZE];
char temp[100] = "";
FILE*fp=fopen("prime.txt","w");
a[0]=2;
j=1;
sprintf(temp, "%d\n", 2);
fwrite(temp,1,strlen(temp),fp);
for(i=3;i<1000000;i+=2)
{
for(k=0;k<j;k++)
{
if(i%a[k]==0)
break;
}
if(k >= j)
{
//prime number
a[j]=i;
j++;
sprintf(temp, "%d\n", i);
fwrite(temp,1,strlen(temp),fp);
}
}
fclose(fp);
printf("DONE!!\n");
return 0;
}
求解第n个质数
内存开销小还跑得快
#include <bits/stdtr1c++.h>
#define MAXN 100
#define MAXM 10001
#define MAXP 40000
#define MAX 400000
#define clr(ar) memset(ar, 0, sizeof(ar))
#define read() freopen("lol.txt", "r", stdin)
#define dbg(x) cout << #x << " = " << x << endl
#define chkbit(ar, i) (((ar[(i) >> 6]) & (1 << (((i) >> 1) & 31))))
#define setbit(ar, i) (((ar[(i) >> 6]) |= (1 << (((i) >> 1) & 31))))
#define isprime(x) (( (x) && ((x)&1) && (!chkbit(ar, (x)))) || ((x) == 2))
using namespace std;
namespace pcf{
long long dp[MAXN][MAXM];
unsigned int ar[(MAX >> 6) + 5] = {0};
int len = 0, primes[MAXP], counter[MAX];
void Sieve(){
setbit(ar, 0), setbit(ar, 1);
for (int i = 3; (i * i) < MAX; i++, i++){
if (!chkbit(ar, i)){
int k = i << 1;
for (int j = (i * i); j < MAX; j += k) setbit(ar, j);
}
}
for (int i = 1; i < MAX; i++){
counter[i] = counter[i - 1];
if (isprime(i)) primes[len++] = i, counter[i]++;
}
}
void init(){
Sieve();
for (int n = 0; n < MAXN; n++){
for (int m = 0; m < MAXM; m++){
if (!n) dp[n][m] = m;
else dp[n][m] = dp[n - 1][m] - dp[n - 1][m / primes[n - 1]];
}
}
}
long long phi(long long m, int n){
if (n == 0) return m;
if (primes[n - 1] >= m) return 1;
if (m < MAXM && n < MAXN) return dp[n][m];
return phi(m, n - 1) - phi(m / primes[n - 1], n - 1);
}
long long Lehmer(long long m){
if (m < MAX) return counter[m];
long long w, res = 0;
int i, a, s, c, x, y;
s = sqrt(0.9 + m), y = c = cbrt(0.9 + m);
a = counter[y], res = phi(m, a) + a - 1;
for (i = a; primes[i] <= s; i++) res = res - Lehmer(m / primes[i]) + Lehmer(primes[i]) - 1;
return res;
}
}
long long solve(long long n){
int i, j, k, l;
long long x, y, res = 0;
for (i = 0; i < pcf::len; i++){
x = pcf::primes[i], y = n / x;
if ((x * x) > n) break;
res += (pcf::Lehmer(y) - pcf::Lehmer(x));
}
for (i = 0; i < pcf::len; i++){
x = pcf::primes[i];
if ((x * x * x) > n) break;
res++;
}
return res;
}
int main(){
pcf::init();
long long n, res,L,R,M,ca=1;
while (scanf("%lld", &n) != EOF){
if(n==0) break;
L=2;R=1e8;
while(L<R){
M=(L+R)/2;
res=pcf::Lehmer(M);
if(res>=n) R=M;
else L=M+1;
}
printf("Case %lld: %lld\n",ca++,L);
}
return 0;
}
内存开销大跑得快 Meisell-Lehmer算法+二分搜索
#include <bits/stdtr1c++.h>
#define MAXN 100
#define MAXM 10001
#define MAXP 40000
#define MAX 400000
#define clr(ar) memset(ar, 0, sizeof(ar))
#define read() freopen("lol.txt", "r", stdin)
#define dbg(x) cout << #x << " = " << x << endl
#define chkbit(ar, i) (((ar[(i) >> 6]) & (1 << (((i) >> 1) & 31))))
#define setbit(ar, i) (((ar[(i) >> 6]) |= (1 << (((i) >> 1) & 31))))
#define isprime(x) (( (x) && ((x)&1) && (!chkbit(ar, (x)))) || ((x) == 2))
using namespace std;
namespace pcf{
long long dp[MAXN][MAXM];
unsigned int ar[(MAX >> 6) + 5] = {0};
int len = 0, primes[MAXP], counter[MAX];
void Sieve(){
setbit(ar, 0), setbit(ar, 1);
for (int i = 3; (i * i) < MAX; i++, i++){
if (!chkbit(ar, i)){
int k = i << 1;
for (int j = (i * i); j < MAX; j += k) setbit(ar, j);
}
}
for (int i = 1; i < MAX; i++){
counter[i] = counter[i - 1];
if (isprime(i)) primes[len++] = i, counter[i]++;
}
}
void init(){
Sieve();
for (int n = 0; n < MAXN; n++){
for (int m = 0; m < MAXM; m++){
if (!n) dp[n][m] = m;
else dp[n][m] = dp[n - 1][m] - dp[n - 1][m / primes[n - 1]];
}
}
}
long long phi(long long m, int n){
if (n == 0) return m;
if (primes[n - 1] >= m) return 1;
if (m < MAXM && n < MAXN) return dp[n][m];
return phi(m, n - 1) - phi(m / primes[n - 1], n - 1);
}
long long Lehmer(long long m){
if (m < MAX) return counter[m];
long long w, res = 0;
int i, a, s, c, x, y;
s = sqrt(0.9 + m), y = c = cbrt(0.9 + m);
a = counter[y], res = phi(m, a) + a - 1;
for (i = a; primes[i] <= s; i++) res = res - Lehmer(m / primes[i]) + Lehmer(primes[i]) - 1;
return res;
}
}
long long solve(long long n){
int i, j, k, l;
long long x, y, res = 0;
for (i = 0; i < pcf::len; i++){
x = pcf::primes[i], y = n / x;
if ((x * x) > n) break;
res += (pcf::Lehmer(y) - pcf::Lehmer(x));
}
for (i = 0; i < pcf::len; i++){
x = pcf::primes[i];
if ((x * x * x) > n) break;
res++;
}
return res;
}
int main(){
pcf::init();
long long n, res,L,R,M,ca=1;
while (scanf("%lld", &n) != EOF){
if(n==0) break;
L=2;R=1e8;
while(L<R){
M=(L+R)/2;
res=pcf::Lehmer(M);
if(res>=n) R=M;
else L=M+1;
}
printf("Case %lld: %lld\n",ca++,L);
}
return 0;
}
Meisell-Lehmer算法模板( 计算2~n中的素数个数
bool np[maxn];
int prime[maxn],pi[maxn];
int getprime()
{
int cnt=0;
np[0]=np[1]=true;
pi[0]=pi[1]=0;
for(int i=2; i<maxn; ++i)
{
if(!np[i]) prime[++cnt]=i;
pi[i]=cnt;
for(int j=1; j<=cnt&&i*prime[j]<maxn; ++j)
{
np[i*prime[j]]=true;
if(i%prime[j]==0) break;
}
}
return cnt;
}
const int M=7;
const int PM=2*3*5*7*11*13*17;
int phi[PM+1][M+1],sz[M+1];
void init()
{
getprime();
sz[0]=1;
for(int i=0; i<=PM; ++i) phi[i][0]=i;
for(int i=1; i<=M; ++i)
{
sz[i]=prime[i]*sz[i-1];
for(int j=1; j<=PM; ++j)
{
phi[j][i]=phi[j][i-1]-phi[j/prime[i]][i-1];
}
}
}
int sqrt2(ll x)
{
ll r=(ll)sqrt(x-0.1);
while(r*r<=x) ++r;
return int(r-1);
}
int sqrt3(ll x)
{
ll r=(ll)cbrt(x-0.1);
while(r*r*r<=x) ++r;
return int(r-1);
}
ll getphi(ll x,int s)
{
if(s==0) return x;
if(s<=M) return phi[x%sz[s]][s]+(x/sz[s])*phi[sz[s]][s];
if(x<=prime[s]*prime[s]) return pi[x]-s+1;
if(x<=prime[s]*prime[s]*prime[s]&&x<maxn)
{
int s2x=pi[sqrt2(x)];
ll ans=pi[x]-(s2x+s-2)*(s2x-s+1)/2;
for(int i=s+1; i<=s2x; ++i)
{
ans+=pi[x/prime[i]];
}
return ans;
}
return getphi(x,s-1)-getphi(x/prime[s],s-1);
}
ll getpi(ll x)
{
if(x<maxn) return pi[x];
ll ans=getphi(x,pi[sqrt3(x)])+pi[sqrt3(x)]-1;
for(int i=pi[sqrt3(x)]+1,ed=pi[sqrt2(x)]; i<=ed; ++i)
{
ans-=getpi(x/prime[i])-i+1;
}
return ans;
}
ll lehmer_pi(ll x)
{
if(x<maxn) return pi[x];
int a=(int)lehmer_pi(sqrt2(sqrt2(x)));
int b=(int)lehmer_pi(sqrt2(x));
int c=(int)lehmer_pi(sqrt3(x));
ll sum=getphi(x,a)+ll(b+a-2)*(b-a+1)/2;
for(int i=a+1; i<=b; i++)
{
ll w=x/prime[i];
sum-=lehmer_pi(w);
if(i>c) continue;
ll lim=lehmer_pi(sqrt2(w));
for(int j=i; j<=lim; j++)
{
sum-=lehmer_pi(w/prime[j])-(j-1);
}
}
return sum;
}