/*Squares
A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-degree angles. It is also a polygon such that
rotating about its centre by 90 degrees gives the same polygon. It is not the only polygon with the latter property, however, as a
regular octagon also has this property.
So we all know what a square looks like, but can we find all possible squares that can be formed from a set of stars in a night sky?
To make the problem easier, we will assume that the night sky is a 2-dimensional plane, and each star is specified by its x and y
coordinates.
Input
The input consists of a number of test cases. Each test case starts with the integer n (1 <= n <= 1000) indicating the number of points
to follow. Each of the next n lines specify the x and y coordinates (two integers) of each point. You may assume that the points are
distinct and the magnitudes of the coordinates are less than 20000. The input is terminated when n = 0.
Output
For each test case, print on a line the number of squares one can form from the given stars.
Sample Input
4
1 0
0 1
1 1
0 0
9
0 0
1 0
2 0
0 2
1 2
2 2
0 1
1 1
2 1
4
-2 5
3 7
0 0
5 2
0
Sample Output
1
6
1*/
//大致题意:有一堆平面散点集,任取四个点,求能组成正方形的不同组合方式有多少。
//相同的四个点,不同顺序构成的正方形视为同一正方形。
#include<iostream>
#include<stdio.h>
#include<queue>
#include<stack>
#include<string.h>
#include<algorithm>
#include<math.h>
#define INF 0x3f3f3f3f;
using namespace std;
const int N=997;
struct point
{
int x,y;
}points[N+10];
struct node
{
int x,y;
int next;
}T[N+10];
int head[N+10];
int top;
void build(point p)
{
int sum=(p.x*p.x+p.y*p.y)%N;
T[top].x=p.x;
T[top].y=p.y;
T[top].next=head[sum];
head[sum]=top++;
}
bool Query(point p)
{
int sum=(p.x*p.x+p.y*p.y)%N;
int q=head[sum];
while(q!=-1)
{
if(T[q].x==p.x&&T[q].y==p.y)
return 1;
q=T[q].next;
}
return 0;
}
int main()
{
int n,x,y;
while(scanf("%d",&n),n)
{
top=0;
memset(head,-1,sizeof(head));
for(int i=0;i<n;i++)
{
scanf("%d%d",&x,&y);
points[i].x=x<<1;
points[i].y=y<<1;
build(points[i]);
}
int g,h,u,v;
point a,b;
int ans=0;
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
g=(points[i].x+points[j].x);
h=(points[i].y+points[j].y);
u=(points[j].x-points[i].x);
v=(points[i].y-points[j].y);
a.x=(g-v)/2;
a.y=(h-u)/2;
b.x=(v+g)/2;
b.y=(h+u)/2;
if(Query(a)&&Query(b))
ans++;
}
}
printf("%d\n",ans/2);
}
return 0;
}