《机器学习》周志华 读书笔记————第三章 线性模型
数据集:D=(x1,y1),(x2,y2).....(xm,ym)D={(x_{1},y_{1}),(x_{2},y_{2}).....(x_{m},y_{m})}D=(x1,y1),(x2,y2).....(xm,ym)
其中:xi=(xi1,xi2...xid),yi∈Rx_{i}=(x_{i1},x_{i2}...x_{id}),y_{i}\in\Rxi=(xi1,xi2...xid),yi∈R
拟合模型:y=wx+by=wx+by=wx+b
目标函数:(w∗,b∗)=argminw,b=∑i=1m(f(xi)−y)2(w^{*},b^{*})=argmin_{w,b}=\sum_{i=1}^{m}(f(x_{i})-y)^{{_{}}^{2}}(w∗,b∗)=argminw,b=∑i=1m(f(xi)−y)2
如果xxx为一维的,非常简单,利用最小二乘法求导可得:w=∑i=1myi(xi−x‾)∑i=1mxi2−1m(∑i=1m)2w=\frac{\sum_{i=1}^{m}y_{i}(x_{i}-\overline{x})}{\sum_{i=1}^{m}x_{i}^{2}-\frac{1}{m}(\sum_{i=1}^{m})_{}^{2}}w=∑i=1mxi2−m1(∑i=1m)2∑i=1myi(xi−x)