overlapped I/O的学习

本文详细介绍了Windows平台上的Overlapped I/O技术,包括如何使用该技术实现文件的非阻塞读写操作,以及通过示例代码展示了如何处理多个并发的I/O请求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从网上整理的文章,同样,这只是为了我增加理解记忆而做到得笔记,
不存在利用价值,纯粹是学习和记忆.抄袭也好学习也好只是让人明
白道理.主要干活的还是自己的程序.

I/O设备处理必然让主程序停下来干等I/O的完成,
对这个问题有

方法一:使用另一个线程进行I/O。这个方案可行,但是麻烦。

方法二:使用overlapped I/O。
  正如书上所说:“overlapped I/O是WIN32的一项技术,
    你可以要求操作系统为你传送数据,并且在传送完毕时通知你。
    这项技术使你的程序在I/O进行过程中仍然能够继续处理事务。
    事实上,操作系统内部正是以线程来I/O完成overlapped I/O。
    你可以获得线程的所有利益,而不需付出什么痛苦的代价”。

怎样使用overlapped I/O:

进行I/O操作时,指定overlapped方式
使用CreateFile (),将其第6个参数指定为FILE_FLAG_OVERLAPPED,
就是准备使用overlapped的方式构造或打开文件;
如果采用 overlapped,那么ReadFile()、WriteFile()的第5个参数必须提供一个指针,
指向一个OVERLAPPED结构。 OVERLAPPED用于记录了当前正在操作的文件一些相关信息。

//功能:从指定文件的1500位置读入300个字节
int main()
{
    BOOL rc;
    HANDLE hFile;
    DWORD numread;
    OVERLAPPED overlap;
    char buf[512];
    char szPath=”x://xxxx/xxxx”;
   
    //检查系统,确定是否支持overlapped,(NT以上操作系统支持OVERLAPPED)
    CheckOsVersion();
    // 以overlapped的方式打开文件
    hFile = CreateFile( szPath,
                    GENERIC_READ,
                    FILE_SHARE_READ|FILE_SHARE_WRITE,
                    NULL,
                    OPEN_EXISTING,
                    FILE_FLAG_OVERLAPPED,
                    NULL
                );

    // OVERLAPPED结构实始化为0
    memset(&overlap, 0, sizeof(overlap));
    //指定文件位置是1500;
    overlap.Offset = 1500;
   
    rc = ReadFile(hFile,buf,300,&numread,&overlap);
    //因为是overlapped操作,ReadFile会将读文件请求放入读队列之后立即返回(false),
    //而不会等到文件读完才返回(true)
    if (rc)
    {
       //文件真是被读完了,rc为true
       // 或当数据被放入cache中,或操作系统认为它可以很快速地取得数据,rc为true
    }
    else
    {
        if (GetLastError() == ERROR_IO_PENDING)
        {//当错误是ERROR_IO_PENDING,那意味着读文件的操作还在进行中
         //等候,直到文件读完
            WaitForSingleObject(hFile, INFINITE);
            rc = GetOverlappedResult(hFile,&overlap,&numread,FALSE);
            //上面二条语句完成的功能与下面一条语句的功能等价:
            // GetOverlappedResult(hFile,&overlap,&numread,TRUE);
         }
         else
         {
            //出错了
        }
    }
    CloseHandle(hFile);
    return EXIT_SUCCESS;
}

在实际工作中,若有几个操作同一个文件时,
怎么办?我们可以利用OVERLAPPED结构中提供的event来解决上面遇到的问题。
注意,你所使用的event对象必须是一个MANUAL型的;否则,可能产生竞争条件。
原因见书P159。
int main()
{
    int i;
    BOOL rc;
    char szPath=”x://xxxx/xxxx”;
    // 以overlapped的方式打开文件
    ghFile = CreateFile( szPath,
                    GENERIC_READ,
                    FILE_SHARE_READ|FILE_SHARE_WRITE,
                    NULL,
                    OPEN_EXISTING,
                    FILE_FLAG_OVERLAPPED,
                    NULL
                );
    for (i=0; i<MAX_REQUESTS; i++)
    {
        //将同一文件按几个部分按overlapped方式同时读
        //注意看QueueRequest函数是如何运做的,每次读16384个块
        QueueRequest(i, i*16384, READ_SIZE);
    }
    // 等候所有操作结束;
    //隐含条件:当一个操作完成时,其对应的event对象会被激活
    WaitForMultipleObjects(MAX_REQUESTS, ghEvents, TRUE, INFINITE);
    // 收尾操作
    for (i=0; i<MAX_REQUESTS; i++)
    {
        DWORD dwNumread;
        rc = GetOverlappedResult(
                                ghFile,
                                &gOverlapped[i],
                                &dwNumread,
                                FALSE
                            );
        CloseHandle(gOverlapped[i].hEvent);
    }
    CloseHandle(ghFile);
    return EXIT_SUCCESS;
}

//当读操作完成以后,gOverlapped[nIndex].hEvent会系统被激发
int QueueRequest(int nIndex, DWORD dwLocation, DWORD dwAmount)
{
    //构造一个MANUAL型的event对象
    ghEvents[nIndex] = CreateEvent(NULL, TRUE, FALSE, NULL);
    //将此event对象置入OVERLAPPED结构
    gOverlapped[nIndex].hEvent = ghEvents[nIndex];
    gOverlapped[nIndex].Offset = dwLocation;
    for (i=0; i<MAX_TRY_COUNT; i++)
   {
      //文件ghFile唯一
       rc = ReadFile(ghFile, gBuffers[nIndex],&dwNumread,&gOverlapped[nIndex]);
       if (rc)
         return TRUE;
       err = GetLastError();
       if (err == ERROR_IO_PENDING)
       {
           //当错误是ERROR_IO_PENDING,那意味着读文件的操作还在进行中
          return TRUE;
       }
       // 处理一些可恢复的错误
       if ( err == ERROR_INVALID_USER_BUFFER ||
            err == ERROR_NOT_ENOUGH_QUOTA ||
            err == ERROR_NOT_ENOUGH_MEMORY )
        {
           sleep(50);
           continue;//重试
        }
        // 如果GetLastError()返回的不是以上列出的错误,放弃
        break;
    }

    return -1;

}

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 在 Android 开发中,Fragment 是界面的一个模块化组件,可用于在 Activity 中灵活地添加、删除或替换。将 ListView 集成到 Fragment 中,能够实现数据的动态加载与列表形式展示,对于构建复杂且交互丰富的界面非常有帮助。本文将详细介绍如何在 Fragment 中使用 ListView。 首先,需要在 Fragment 的布局文件中添加 ListView 的 XML 定义。一个基本的 ListView 元素代码如下: 接着,创建适配器来填充 ListView 的数据。通常会使用 BaseAdapter 的子类,如 ArrayAdapter 或自定义适配器。例如,创建一个简单的 MyListAdapter,继承自 ArrayAdapter,并在构造函数中传入数据集: 在 Fragment 的 onCreateView 或 onActivityCreated 方法中,实例化 ListView 和适配器,并将适配器设置到 ListView 上: 为了提升用户体验,可以为 ListView 设置点击事件监听器: 性能优化也是关键。设置 ListView 的 android:cacheColorHint 属性可提升滚动流畅度。在 getView 方法中复用 convertView,可减少视图创建,提升性能。对于复杂需求,如异步加载数据,可使用 LoaderManager 和 CursorLoader,这能更好地管理数据加载,避免内存泄漏,支持数据变更时自动刷新。 总结来说,Fragment 中的 ListView 使用涉及布局设计、适配器创建与定制、数据绑定及事件监听。掌握这些步骤,可构建功能强大的应用。实际开发中,还需优化 ListView 性能,确保应用流畅运
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值