overlapped I/O的学习

本文详细介绍了Windows平台上的Overlapped I/O技术,包括如何使用该技术实现文件的非阻塞读写操作,以及通过示例代码展示了如何处理多个并发的I/O请求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从网上整理的文章,同样,这只是为了我增加理解记忆而做到得笔记,
不存在利用价值,纯粹是学习和记忆.抄袭也好学习也好只是让人明
白道理.主要干活的还是自己的程序.

I/O设备处理必然让主程序停下来干等I/O的完成,
对这个问题有

方法一:使用另一个线程进行I/O。这个方案可行,但是麻烦。

方法二:使用overlapped I/O。
  正如书上所说:“overlapped I/O是WIN32的一项技术,
    你可以要求操作系统为你传送数据,并且在传送完毕时通知你。
    这项技术使你的程序在I/O进行过程中仍然能够继续处理事务。
    事实上,操作系统内部正是以线程来I/O完成overlapped I/O。
    你可以获得线程的所有利益,而不需付出什么痛苦的代价”。

怎样使用overlapped I/O:

进行I/O操作时,指定overlapped方式
使用CreateFile (),将其第6个参数指定为FILE_FLAG_OVERLAPPED,
就是准备使用overlapped的方式构造或打开文件;
如果采用 overlapped,那么ReadFile()、WriteFile()的第5个参数必须提供一个指针,
指向一个OVERLAPPED结构。 OVERLAPPED用于记录了当前正在操作的文件一些相关信息。

//功能:从指定文件的1500位置读入300个字节
int main()
{
    BOOL rc;
    HANDLE hFile;
    DWORD numread;
    OVERLAPPED overlap;
    char buf[512];
    char szPath=”x://xxxx/xxxx”;
   
    //检查系统,确定是否支持overlapped,(NT以上操作系统支持OVERLAPPED)
    CheckOsVersion();
    // 以overlapped的方式打开文件
    hFile = CreateFile( szPath,
                    GENERIC_READ,
                    FILE_SHARE_READ|FILE_SHARE_WRITE,
                    NULL,
                    OPEN_EXISTING,
                    FILE_FLAG_OVERLAPPED,
                    NULL
                );

    // OVERLAPPED结构实始化为0
    memset(&overlap, 0, sizeof(overlap));
    //指定文件位置是1500;
    overlap.Offset = 1500;
   
    rc = ReadFile(hFile,buf,300,&numread,&overlap);
    //因为是overlapped操作,ReadFile会将读文件请求放入读队列之后立即返回(false),
    //而不会等到文件读完才返回(true)
    if (rc)
    {
       //文件真是被读完了,rc为true
       // 或当数据被放入cache中,或操作系统认为它可以很快速地取得数据,rc为true
    }
    else
    {
        if (GetLastError() == ERROR_IO_PENDING)
        {//当错误是ERROR_IO_PENDING,那意味着读文件的操作还在进行中
         //等候,直到文件读完
            WaitForSingleObject(hFile, INFINITE);
            rc = GetOverlappedResult(hFile,&overlap,&numread,FALSE);
            //上面二条语句完成的功能与下面一条语句的功能等价:
            // GetOverlappedResult(hFile,&overlap,&numread,TRUE);
         }
         else
         {
            //出错了
        }
    }
    CloseHandle(hFile);
    return EXIT_SUCCESS;
}

在实际工作中,若有几个操作同一个文件时,
怎么办?我们可以利用OVERLAPPED结构中提供的event来解决上面遇到的问题。
注意,你所使用的event对象必须是一个MANUAL型的;否则,可能产生竞争条件。
原因见书P159。
int main()
{
    int i;
    BOOL rc;
    char szPath=”x://xxxx/xxxx”;
    // 以overlapped的方式打开文件
    ghFile = CreateFile( szPath,
                    GENERIC_READ,
                    FILE_SHARE_READ|FILE_SHARE_WRITE,
                    NULL,
                    OPEN_EXISTING,
                    FILE_FLAG_OVERLAPPED,
                    NULL
                );
    for (i=0; i<MAX_REQUESTS; i++)
    {
        //将同一文件按几个部分按overlapped方式同时读
        //注意看QueueRequest函数是如何运做的,每次读16384个块
        QueueRequest(i, i*16384, READ_SIZE);
    }
    // 等候所有操作结束;
    //隐含条件:当一个操作完成时,其对应的event对象会被激活
    WaitForMultipleObjects(MAX_REQUESTS, ghEvents, TRUE, INFINITE);
    // 收尾操作
    for (i=0; i<MAX_REQUESTS; i++)
    {
        DWORD dwNumread;
        rc = GetOverlappedResult(
                                ghFile,
                                &gOverlapped[i],
                                &dwNumread,
                                FALSE
                            );
        CloseHandle(gOverlapped[i].hEvent);
    }
    CloseHandle(ghFile);
    return EXIT_SUCCESS;
}

//当读操作完成以后,gOverlapped[nIndex].hEvent会系统被激发
int QueueRequest(int nIndex, DWORD dwLocation, DWORD dwAmount)
{
    //构造一个MANUAL型的event对象
    ghEvents[nIndex] = CreateEvent(NULL, TRUE, FALSE, NULL);
    //将此event对象置入OVERLAPPED结构
    gOverlapped[nIndex].hEvent = ghEvents[nIndex];
    gOverlapped[nIndex].Offset = dwLocation;
    for (i=0; i<MAX_TRY_COUNT; i++)
   {
      //文件ghFile唯一
       rc = ReadFile(ghFile, gBuffers[nIndex],&dwNumread,&gOverlapped[nIndex]);
       if (rc)
         return TRUE;
       err = GetLastError();
       if (err == ERROR_IO_PENDING)
       {
           //当错误是ERROR_IO_PENDING,那意味着读文件的操作还在进行中
          return TRUE;
       }
       // 处理一些可恢复的错误
       if ( err == ERROR_INVALID_USER_BUFFER ||
            err == ERROR_NOT_ENOUGH_QUOTA ||
            err == ERROR_NOT_ENOUGH_MEMORY )
        {
           sleep(50);
           continue;//重试
        }
        // 如果GetLastError()返回的不是以上列出的错误,放弃
        break;
    }

    return -1;

}

内容概要:本文深入解析了扣子COZE AI编程及其详细应用代码案例,旨在帮助读者理解新一代低门槛智能体开发范式。文章从五个维度展开:关键概念、核心技巧、典型应用场景、详细代码案例分析以及未来发展趋势。首先介绍了扣子COZE的核心概念,如Bot、Workflow、Plugin、Memory和Knowledge。接着分享了意图识别、函数调用链、动态Prompt、渐进式发布及监控可观测等核心技巧。然后列举了企业内部智能客服、电商导购助手、教育领域AI助教和金融行业合规质检等应用场景。最后,通过构建“会议纪要智能助手”的详细代码案例,展示了从需求描述、技术方案、Workflow节点拆解到调试与上线的全过程,并展望了多智能体协作、本地私有部署、Agent2Agent协议、边缘计算插件和实时RAG等未来发展方向。; 适合人群:对AI编程感兴趣的开发者,尤其是希望快速落地AI产品的技术人员。; 使用场景及目标:①学习如何使用扣子COZE构建生产级智能体;②掌握智能体实例、自动化流程、扩展能力和知识库的使用方法;③通过实际案例理解如何实现会议纪要智能助手的功能,包括触发器设置、下载节点、LLM节点Prompt设计、Code节点处理和邮件节点配置。; 阅读建议:本文不仅提供了理论知识,还包含了详细的代码案例,建议读者结合实际业务需求进行实践,逐步掌握扣子COZE的各项功能,并关注其未来的发展趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值