深度解析Objective-C内存管理教程

本文深入探讨Objective-C的内存管理机制,包括引用计数、AutoreleasePool的作用及使用技巧等核心概念,帮助开发者掌握内存管理的最佳实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度解析Objective-C内存管理教程是本文要介绍的内容,不多说,来看内容。iPhone系统中的Objective-C的内存管理机制是比较灵活的,即可以拿来像C/C++一样用,也可以加个AutoreleasePool让它升级为半自动化的内存管理语言。当然,也不能拿JAVA虚拟机中的全自动化GC来比

引用计数是实例对象的内存回收唯一参考

引用计数(retainCount)是Objective- C管理对象引用的唯一依据。调用实例的release方法后,此属性减一,减到为零时对象的dealloc方法被自动调用,进行内存回收操作,也就是说我们永不该手动调用对象的dealloc方法。

主要操作接口:

1、alloc, allocWithZone,new(带初始化)

为对象分配内存,retainCount为“1”,并返回此实例

2、retain

 
  1. retainCount 加“1” 

3、release

retainCount 减“1”,减到“0”时调用此对象的dealloc方法
   
4、copy,mutableCopy

复制一个实例,retainCount数为“1”,返回此实例。所得到的对象是与其它上下文无关的,独立的对象(干净对象)。

5、autorelease

在当前上下文的AutoreleasePool栈顶的autoreleasePool实例添加此对象,由于它的引入使Objective-C(非GC管理环境)由全手动内存管理上升到半自动化。

 
  1. - (void)setMyArray:(NSMutableArray *)newArray {     
  2.     if (myArray != newArray) {     
  3.         [myArray release];     
  4.         myArray = [newArray retain];     
  5.     }     
  6. }    

假设这个类的一个实例为'a',调用setMyArray后,我们就可以说a拥有了一个新的myArray 实例,也可以说a引用了一个新的myArray实例。其中调用的retain方法,使myArray的retainCount加一,我们需要注意以下两个地方:
 
1,setMyarray方法中,在retain之前先release了旧实例一次

2,在本实例的dealloc方法中,本应该是要再次release当前实例的,但回头看看参考内存管理准则。它并不合理,对吧。。。多了一次 release。这里比较推荐的做法是:

 
  1. [myArray setMyArray:nil]; 

这样可以巧妙的使当前实例release而不出错(我们可以向nil发送消息~其实它本身就是个整数0),并符合我们的内存管理准则。更主要的是,很简单,你不需要考虑过多的事情。

数组(Array)是一个比较特别的例子,当你往数组里面添加一个对象时。数组里面存储的并不是这个对象的拷贝,而只是一个指向该对象的指针。数组在保存这个指针的同时会向指针所指的对象发送一个retain消息,相应的,对象的持有计数会增加。将对象从数组中移除的时候,同样会向对象发送release消息,对象的持有计数会减小。当我们释放这个数组时,会向保存在这个数组中的所有对象发送release消息。看下面的两个例子:

1、没有释放内存的版本

 
  1. array = [[NSMutableArray alloc] init];  
  2. for ( i = 0; i < 10; i++) {  
  3. newNumber = [[NSNumber alloc]initWithInt:(i * 3)];  
  4. [array addObject:newNumber];  

上面的代码在创建newNumber对象时,向对象的发送了retain消息,对象的持有计数变为1。当向array中添加这个对象的引用时,又向对象发送了一次retain消息,这样对象的持有计数就变为2了,在使用完array时,我们会习惯性的释放掉array,但这样并不会释放array所持有的对象,而只是使所有对象的持有计数变为1,这些对象依然会占用着内存。

2、释放内存的版本

 
  1. for (i = 0; i < 10; i++) {  
  2. newNumber = [[NSNumber alloc]initWithInt:(i*3)];  
  3. [array addObject:newNumber];  
  4. [newNumber release];  

AutoreleasePool使 Objective-C成为内存管理半自动化语言。

如果仅仅是上面这些,很简单,对吧。但往往很多人都会迷糊在自动内存管理这块上,感觉像是有魔法,但其实原理也很简单~

先看看最经典的程序入口程序:

 
  1. NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];  
  2. int retVal = UIApplicationMain(argc, argv, nil, nil);  
  3. [pool release]; 

我们先把pool看成一个普通对象~很简单,先是alloc,pool的retainCount为1。第三句release,retainCount为0,自动调用它的dealloc方法。它和任何其它普通对象没任何区别。

魔法在哪里?

在声明pool后,release它之前的这段代码,所有段里的代码(先假设中间没有声明其它的AutoreleasePool实例),凡是调用了 autorelase方法的实例,都会把它的retainCount加1,并在此pool实例中添1次此实例要回收的记录以做备案。当此pool实例 dealloc时,首先会检查之前备案的所有实例,所有记录在案的实例都会依次调用它的release方法。

代码:

 
  1. NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];     
  2. NSObject *o = [[NSObject alloc] init];     
  3. [o autorelease];                                //在pool实例dealloc时,release一次此实例,重要的是并不是在此行去release     
  4. NSLog(@"o retainCount:%d",[o retainCount]);    //此时还可以看到我们的o实例还是可用的,并且retainCount为1     
  5. [pool release];    //pool 的 retainCount 为0,自动调用其dealloc方法,我们之前备案的小o也将在这里release一次(因为咱们之前仅仅autorelease一次)  

真对同一个实例,同一个Pool是可以多次注册备案(autorelease)的。在一些很少的情况化可能会出现这种需求:

代码:

 
  1. NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];     
  2. NSObject *o = [[NSObject alloc] init];     
  3. [o retain];     
  4. [o autorelease];     
  5. [o autorelease];     
  6. [pool release];    

我们调用了两次A类(retainCount加1的方法),使其retainCount为2,而接下来的两次autorelease方法调用,使其在pool中注册备案了两次。这里的pool将会在回收时调用此实例的两次release方法。使其 retainCount降为0,完成回收内存的操作,其实这也是完全按照内存管理规则办事的好处~

AutoreleasePool 是被嵌套的!

池是被嵌套的,嵌套的结果是个栈,同一线程只有当前栈顶pool实例是可用的:

 
  1. |  pool_3  |  
  2. |  ---------      |  
  3. |  pool_2      |  
  4. |  ---------   |  
  5. |  pool_1  |  
  6. |_______| 

其代码如下:

 
  1. NSAutoreleasePool *pool1 = [[NSAutoreleasePool alloc] init];     
  2. NSAutoreleasePool *pool2 = [[NSAutoreleasePool alloc] init];     
  3. NSAutoreleasePool *pool3 = [[NSAutoreleasePool alloc] init];     
  4. NSObject *o = [[NSObject alloc] init] autorelease];     
  5. [pool3 release];     
  6. [pool2 release];     
  7. [pool1 release];    

我们可以看到其栈顶是pool3,o的autorelease是把当前的release放在栈顶的pool 实例管理。。。也就是pool3。
在生命周期短,产生大量放在autoreleasePool中管理实例的情况下经常用此方法减少内存使用,达到内存及时回收的目的。

AutoreleasePool还被用在哪里?

在上面的例子里,也可以看到,我们在执行autorelease方法时,并没有时时的进行 release操作~它的release被延时到pool实例的dealloc方法里。这个小细节使我们的Objective-C用起来可以在方法栈中申请堆中的内存,创建实例,并把它放在当前pool中延迟到此方法的调用者释放.

小结:深度解析Objective-C内存管理教程的内容介绍完了,希望本文对你有所帮助!

REF:
http://mobile.51cto.com/iphone-279751.htm

CH341A编程器是一款广泛应用的通用编程设备,尤其在电子工程和嵌入式系统开发领域中,它被用来烧录各种类型的微控制器、存储器和其他IC芯片。这款编程器的最新版本为1.3,它的一个显著特点是增加了对25Q256等32M芯片的支持。 25Q256是一种串行EEPROM(电可擦可编程只读存储器)芯片,通常用于存储程序代码、配置数据或其他非易失性信息。32M在这里指的是存储容量,即该芯片可以存储32兆位(Mbit)的数据,换算成字节数就是4MB。这种大容量的存储器在许多嵌入式系统中都有应用,例如汽车电子、工业控制、消费电子设备等。 CH341A编程器的1.3版更新,意味着它可以与更多的芯片型号兼容,特别是针对32M容量的芯片进行了优化,提高了编程效率和稳定性。26系列芯片通常指的是Microchip公司的25系列SPI(串行外围接口)EEPROM产品线,这些芯片广泛应用于各种需要小体积、低功耗和非易失性存储的应用场景。 全功能版的CH341A编程器不仅支持25Q256,还支持其他大容量芯片,这意味着它具有广泛的兼容性,能够满足不同项目的需求。这包括但不限于微控制器、EPROM、EEPROM、闪存、逻辑门电路等多种类型芯片的编程。 使用CH341A编程器进行编程操作时,首先需要将设备通过USB连接到计算机,然后安装相应的驱动程序和编程软件。在本例中,压缩包中的"CH341A_1.30"很可能是编程软件的安装程序。安装后,用户可以通过软件界面选择需要编程的芯片类型,加载待烧录的固件或数据,然后执行编程操作。编程过程中需要注意的是,确保正确设置芯片的电压、时钟频率等参数,以防止损坏芯片。 CH341A编程器1.3版是面向电子爱好者和专业工程师的一款实用工具,其强大的兼容性和易用性使其在众多编程器中脱颖而出。对于需要处理25Q256等32M芯片的项目,或者26系列芯片的编程工作,CH341A编程器是理想的选择。通过持续的软件更新和升级,它保持了与现代电子技术同步,确保用户能方便地对各种芯片进行编程和调试。
内存分区情况的分析是嵌入式系统开发中的一个重要环节,特别是在资源有限的MCU(微控制器)环境中。标题提到的工具是一款专为分析Linux环境下的`gcc-map`文件设计的工具,这类文件在编译过程结束后生成,包含了程序在目标设备内存中的布局信息。这个工具可以帮助开发者理解程序在RAM、ROM以及FLASH等存储区域的占用情况,从而进行优化。 `gcc-map`文件通常包含以下关键信息: 1. **符号表**:列出所有定义的全局和静态变量、函数以及其他符号,包括它们的地址和大小。 2. **节区分配**:显示每个代码和数据节区在内存中的位置,比如.text(代码)、.data(已初始化数据)、.bss(未初始化数据)等。 3. **内存汇总**:总览所有节区的大小,有助于评估程序的整体内存需求。 4. **重定位信息**:显示了代码和数据如何在目标地址空间中定位。 该分析工具可能提供以下功能: 1. **可视化展示**:将内存分配以图形化方式呈现,便于直观理解。 2. **详细报告**:生成详细的分析报告,列出每个符号的大小和位置。 3. **比较功能**:对比不同编译版本或配置的`map`文件,查看内存使用的变化。 4. **统计分析**:计算各种内存区域的使用率,帮助识别潜在的优化点。 5. **自定义过滤**:允许用户根据需要筛选和关注特定的符号或节区。 虽然在MCU环境中,Keil IDE自带的工具可能更方便,因为它们通常针对特定的MCU型号进行了优化,提供更加细致的硬件相关分析。然而,对于通用的Linux系统或跨平台项目,这款基于`gcc-map`的分析工具提供了更广泛的适用性。 在实际使用过程中,开发者可以利用这款工具来: - **优化内存使用**:通过分析哪些函数或数据占用过多的内存,进行代码重构或调整链接器脚本以减小体积。 - **排查内存泄漏**:结合其他工具,比如动态内存检测工具,查找可能导致内存泄漏的部分。 - **性能调优**:了解代码执行时的内存分布,有助于提高运行效率。 - **满足资源限制**:在嵌入式系统中,确保程序能在有限的内存空间内运行。 总结来说,`gcc-amap`这样的工具对于深入理解程序的内存布局和资源消耗至关重要,它能帮助开发者做出更明智的决策,优化代码以适应不同的硬件环境。在处理`map`文件时,开发者不仅能获取到程序的内存占用情况,还能进一步挖掘出可能的优化空间,从而提升系统的整体性能和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值